from __future__ import annotations
import json
import uuid
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Literal,
Optional,
Sequence,
Type,
Union,
cast,
overload,
)
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
BaseChatModel,
agenerate_from_stream,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
HumanMessage,
SystemMessage,
ToolMessage,
)
from langchain_core.messages.tool import tool_call as create_tool_call
from langchain_core.messages.tool import tool_call_chunk
from langchain_core.outputs import (
ChatGeneration,
ChatGenerationChunk,
ChatResult,
)
from langchain_core.runnables import Runnable
from langchain_core.tools import BaseTool
from langchain_core.utils.function_calling import (
convert_to_openai_function,
)
from langchain_google_vertexai.model_garden_maas._base import (
_BaseVertexMaasModelGarden,
acompletion_with_retry,
completion_with_retry,
)
@overload
def _parse_response_candidate_llama(
response_candidate: Dict[str, str], streaming: Literal[False] = False
) -> AIMessage:
...
@overload
def _parse_response_candidate_llama(
response_candidate: Dict[str, str], streaming: Literal[True]
) -> AIMessageChunk:
...
def _parse_response_candidate_llama(
response_candidate: Dict[str, str], streaming: bool = False
) -> AIMessage:
content = response_candidate["content"]
role = response_candidate["role"]
if role != "assistant":
raise ValueError(f"Role in response is {role}, expected 'assistant'!")
tool_calls = []
tool_call_chunks = []
response_json = None
try:
response_json = json.loads(response_candidate["content"])
except ValueError:
pass
if response_json and "name" in response_json:
function_name = response_json["name"]
function_args = response_json.get("parameters", None)
if streaming:
tool_call_chunks.append(
tool_call_chunk(
name=function_name, args=function_args, id=str(uuid.uuid4())
)
)
else:
tool_calls.append(
create_tool_call(
name=function_name, args=function_args, id=str(uuid.uuid4())
)
)
content = ""
if streaming:
return AIMessageChunk(
content=content,
tool_call_chunks=tool_call_chunks,
)
return AIMessage(
content=content,
tool_calls=tool_calls,
)
[docs]
class VertexModelGardenLlama(_BaseVertexMaasModelGarden, BaseChatModel):
"""Integration for Llama 3.1 on Google Cloud Vertex AI Model-as-a-Service.
For more information, see:
https://cloud.google.com/blog/products/ai-machine-learning/llama-3-1-on-vertex-ai
Setup:
You need to enable a corresponding MaaS model (Google Cloud UI console ->
Vertex AI -> Model Garden -> search for a model you need and click enable)
You must have the langchain-google-vertexai Python package installed
.. code-block:: bash
pip install -U langchain-google-vertexai
And either:
- Have credentials configured for your environment
(gcloud, workload identity, etc...)
- Store the path to a service account JSON file as the
GOOGLE_APPLICATION_CREDENTIALS environment variable
This codebase uses the google.auth library which first looks for the application
credentials variable mentioned above, and then looks for system-level auth.
For more information, see:
https://cloud.google.com/docs/authentication/application-default-credentials#GAC
and https://googleapis.dev/python/google-auth/latest/reference/google.auth.html#module-google.auth.
Key init args β completion params:
model: str
Name of VertexMaaS model to use ("meta/llama3-405b-instruct-maas")
append_tools_to_system_message: bool
Whether to append tools to a system message
Key init args β client params:
credentials: Optional[google.auth.credentials.Credentials]
The default custom credentials to use when making API calls. If not
provided, credentials will be ascertained from the environment.
project: Optional[str]
The default GCP project to use when making Vertex API calls.
location: str = "us-central1"
The default location to use when making API calls.
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from langchain_google_vertexai import VertexMaaS
llm = VertexModelGardenLlama(
model="meta/llama3-405b-instruct-maas",
# other params...
)
Invoke:
.. code-block:: python
messages = [
("system", "You are a helpful translator. Translate the user sentence to French."),
("human", "I love programming."),
]
llm.invoke(messages)
.. code-block:: python
AIMessage(content="J'adore programmer. \n", id='run-925ce305-2268-44c4-875f-dde9128520ad-0')
Stream:
.. code-block:: python
for chunk in llm.stream(messages):
print(chunk)
.. code-block:: python
AIMessageChunk(content='J', id='run-9df01d73-84d9-42db-9d6b-b1466a019e89')
AIMessageChunk(content="'adore programmer. \n", id='run-9df01d73-84d9-42db-9d6b-b1466a019e89')
AIMessageChunk(content='', id='run-9df01d73-84d9-42db-9d6b-b1466a019e89')
.. code-block:: python
stream = llm.stream(messages)
full = next(stream)
for chunk in stream:
full += chunk
full
.. code-block:: python
AIMessageChunk(content="J'adore programmer. \n", id='run-b7f7492c-4cb5-42d0-8fc3-dce9b293b0fb')
""" # noqa: E501
def _convert_messages(
self, messages: List[BaseMessage], tools: Optional[List[BaseTool]] = None
) -> List[Dict[str, Any]]:
converted_messages: List[Dict[str, Any]] = []
if tools and not self.append_tools_to_system_message:
raise ValueError(
"If providing tools, either format system message yourself or "
"append_tools_to_system_message to True!"
)
elif tools:
tools_str = "\n".join(
[json.dumps(convert_to_openai_function(t)) for t in tools]
)
formatted_system_message = (
"You are an assistant with access to the following tools:\n\n"
f"{tools_str}\n\n"
"If you decide to use a tool, please respond with a JSON for a "
"function call with its proper arguments that best answers the "
"given prompt.\nRespond in the format "
'{"name": function name, "parameters": dictionary '
"of argument name and its value}. Do not use variables.\n"
"Do not provide any additional comments when calling a tool.\n"
"Do not mention tools to the user when preparing the final answer."
)
message = messages[0]
if not isinstance(message, SystemMessage):
converted_messages.append(
{"role": "system", "content": formatted_system_message}
)
else:
converted_messages.append(
{
"role": "system",
"content": str(message.content)
+ "\n"
+ formatted_system_message,
}
)
for i, message in enumerate(messages):
if tools and isinstance(message, SystemMessage) and i == 0:
continue
if isinstance(message, AIMessage):
converted_messages.append(
{"role": "assistant", "content": message.content}
)
elif isinstance(message, HumanMessage):
converted_messages.append({"role": "user", "content": message.content})
elif isinstance(message, SystemMessage):
converted_messages.append(
{"role": "system", "content": message.content}
)
elif isinstance(message, ToolMessage):
# we also need to format a previous message if we got a tool result
prev_message = messages[i - 1]
if not isinstance(prev_message, AIMessage):
raise ValueError("ToolMessage should follow AIMessage only!")
_ = converted_messages[-1].pop("content", None)
tool_calls = []
for tool_call in prev_message.tool_calls:
tool_calls.append(
{
"type": "function",
"id": tool_call["id"],
"function": {
"name": tool_call["name"],
"arguments": json.dumps(tool_call.get("args", {})),
},
}
)
converted_messages[-1]["tool_calls"] = tool_calls
if len(tool_calls) > 1:
raise ValueError(
"Only a single function call per turn is supported!"
)
converted_messages.append(
{
"role": "tool",
"name": message.name,
"content": message.content,
"tool_call_id": message.tool_call_id,
}
)
else:
raise ValueError(f"Message type {type(message)} is not yet supported!")
return converted_messages
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
*,
tools: Optional[List[BaseTool]] = None,
**kwargs: Any,
) -> ChatResult:
"""Generate next turn in the conversation.
Args:
messages: The history of the conversation as a list of messages. Code chat
does not support context.
stop: The list of stop words (optional).
run_manager: The CallbackManager for LLM run, it's not used at the moment.
stream: Whether to use the streaming endpoint.
Returns:
The ChatResult that contains outputs generated by the model.
Raises:
ValueError: if the last message in the list is not from human.
"""
if stream is True:
return generate_from_stream(
self._stream(
messages,
stop=stop,
run_manager=run_manager,
tools=tools,
**kwargs,
)
)
converted_messages = self._convert_messages(messages, tools=tools)
response = completion_with_retry(self, messages=converted_messages, **kwargs)
return self._create_chat_result(response)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
*,
tools: Optional[List[BaseTool]] = None,
**kwargs: Any,
) -> ChatResult:
if stream:
stream_iter = self._astream(
messages=messages, stop=stop, run_manager=run_manager, **kwargs
)
return await agenerate_from_stream(stream_iter)
converted_messages = self._convert_messages(messages, tools=tools)
response = await acompletion_with_retry(
self, messages=converted_messages, run_manager=run_manager, **kwargs
)
return self._create_chat_result(response)
def _create_chat_result(self, response: Dict) -> ChatResult:
generations = []
token_usage = response.get("usage", {})
for candidate in response["choices"]:
finish_reason = response.get("finish_reason")
message = _parse_response_candidate_llama(candidate["message"])
if token_usage and isinstance(message, AIMessage):
message.usage_metadata = {
"input_tokens": token_usage.get("prompt_tokens", 0),
"output_tokens": token_usage.get("completion_tokens", 0),
"total_tokens": token_usage.get("total_tokens", 0),
}
gen = ChatGeneration(
message=message,
generation_info={"finish_reason": finish_reason},
)
generations.append(gen)
llm_output = {"token_usage": token_usage, "model": self.model_name}
return ChatResult(generations=generations, llm_output=llm_output)
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "vertexai_model_garden_maas_llama"
def _parse_chunk(self, chunk: Dict) -> AIMessageChunk:
chunk_delta = chunk["choices"][0]["delta"]
content = chunk_delta.get("content", "")
if chunk_delta.get("role") != "assistant":
raise ValueError(f"Got chunk with non-assistant role: {chunk_delta}")
additional_kwargs = {}
if raw_tool_calls := chunk_delta.get("tool_calls"):
additional_kwargs["tool_calls"] = raw_tool_calls
try:
tool_call_chunks = []
for raw_tool_call in raw_tool_calls:
if not raw_tool_call.get("index") and not raw_tool_call.get("id"):
tool_call_id = str(uuid.uuid4())
else:
tool_call_id = raw_tool_call.get("id")
tool_call_chunks.append(
tool_call_chunk(
name=raw_tool_call["function"].get("name"),
args=raw_tool_call["function"].get("arguments"),
id=tool_call_id,
index=raw_tool_call.get("index"),
)
)
except KeyError:
pass
else:
tool_call_chunks = []
if token_usage := chunk.get("usage"):
usage_metadata = {
"input_tokens": token_usage.get("prompt_tokens", 0),
"output_tokens": token_usage.get("completion_tokens", 0),
"total_tokens": token_usage.get("total_tokens", 0),
}
else:
usage_metadata = None
return AIMessageChunk(
content=content,
additional_kwargs=additional_kwargs,
tool_call_chunks=tool_call_chunks,
usage_metadata=usage_metadata, # type: ignore[arg-type]
)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
*,
tools: Optional[List[BaseTool]] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
converted_messages = self._convert_messages(messages, tools=tools)
params = {**kwargs, "stream": True, "headers_content_type": "text/event-stream"}
for chunk in completion_with_retry(
self, messages=converted_messages, run_manager=run_manager, **params
):
if len(chunk["choices"]) == 0:
continue
message = self._parse_chunk(chunk)
gen_chunk = ChatGenerationChunk(message=message)
if run_manager:
run_manager.on_llm_new_token(
token=cast(str, message.content), chunk=gen_chunk
)
yield gen_chunk
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
*,
tools: Optional[List[BaseTool]] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
converted_messages = self._convert_messages(messages, tools=tools)
params = {**kwargs, "stream": True, "headers_content_type": "text/event-stream"}
async for chunk in await acompletion_with_retry(
self, messages=converted_messages, run_manager=run_manager, **params
):
if len(chunk["choices"]) == 0:
continue
message = self._parse_chunk(chunk)
gen_chunk = ChatGenerationChunk(message=message)
if run_manager:
await run_manager.on_llm_new_token(
token=cast(str, message.content), chunk=gen_chunk
)
yield gen_chunk