langchain_ibm.rerank ηš„ζΊδ»£η 

from __future__ import annotations

from copy import deepcopy
from typing import Any, Dict, List, Optional, Sequence, Union

from ibm_watsonx_ai import APIClient, Credentials  # type: ignore
from ibm_watsonx_ai.foundation_models import Rerank  # type: ignore
from ibm_watsonx_ai.foundation_models.schema import (  # type: ignore
    RerankParameters,
)
from langchain_core.callbacks import Callbacks
from langchain_core.documents import BaseDocumentCompressor, Document
from langchain_core.utils.utils import secret_from_env
from pydantic import ConfigDict, Field, SecretStr, model_validator
from typing_extensions import Self

from langchain_ibm.utils import check_for_attribute, extract_params


[docs] class WatsonxRerank(BaseDocumentCompressor): """Document compressor that uses `watsonx Rerank API`.""" model_id: str """Type of model to use.""" project_id: Optional[str] = None """ID of the Watson Studio project.""" space_id: Optional[str] = None """ID of the Watson Studio space.""" url: SecretStr = Field( alias="url", default_factory=secret_from_env("WATSONX_URL", default=None), # type: ignore[assignment] ) """URL to the Watson Machine Learning or CPD instance.""" apikey: Optional[SecretStr] = Field( alias="apikey", default_factory=secret_from_env("WATSONX_APIKEY", default=None) ) """API key to the Watson Machine Learning or CPD instance.""" token: Optional[SecretStr] = Field( alias="token", default_factory=secret_from_env("WATSONX_TOKEN", default=None) ) """Token to the CPD instance.""" password: Optional[SecretStr] = Field( alias="password", default_factory=secret_from_env("WATSONX_PASSWORD", default=None), ) """Password to the CPD instance.""" username: Optional[SecretStr] = Field( alias="username", default_factory=secret_from_env("WATSONX_USERNAME", default=None), ) """Username to the CPD instance.""" instance_id: Optional[SecretStr] = Field( alias="instance_id", default_factory=secret_from_env("WATSONX_INSTANCE_ID", default=None), ) """Instance_id of the CPD instance.""" version: Optional[SecretStr] = None """Version of the CPD instance.""" params: Optional[Union[dict, RerankParameters]] = None """Model parameters to use during request generation.""" verify: Union[str, bool, None] = None """You can pass one of following as verify: * the path to a CA_BUNDLE file * the path of directory with certificates of trusted CAs * True - default path to truststore will be taken * False - no verification will be made""" validate_model: bool = True """Model ID validation.""" streaming: bool = False """ Whether to stream the results or not. """ watsonx_rerank: Rerank = Field(default=None, exclude=True) #: :meta private: watsonx_client: Optional[APIClient] = Field(default=None, exclude=True) model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", protected_namespaces=(), ) @property def lc_secrets(self) -> Dict[str, str]: """A map of constructor argument names to secret ids. For example: { "url": "WATSONX_URL", "apikey": "WATSONX_APIKEY", "token": "WATSONX_TOKEN", "password": "WATSONX_PASSWORD", "username": "WATSONX_USERNAME", "instance_id": "WATSONX_INSTANCE_ID", } """ return { "url": "WATSONX_URL", "apikey": "WATSONX_APIKEY", "token": "WATSONX_TOKEN", "password": "WATSONX_PASSWORD", "username": "WATSONX_USERNAME", "instance_id": "WATSONX_INSTANCE_ID", } @model_validator(mode="after") def validate_environment(self) -> Self: """Validate that credentials and python package exists in environment.""" if isinstance(self.watsonx_client, APIClient): watsonx_rerank = Rerank( model_id=self.model_id, params=self.params, api_client=self.watsonx_client, project_id=self.project_id, space_id=self.space_id, verify=self.verify, ) self.watsonx_rerank = watsonx_rerank else: check_for_attribute(self.url, "url", "WATSONX_URL") if "cloud.ibm.com" in self.url.get_secret_value(): if not self.token and not self.apikey: raise ValueError( "Did not find 'apikey' or 'token'," " please add an environment variable" " `WATSONX_APIKEY` or 'WATSONX_TOKEN' " "which contains it," " or pass 'apikey' or 'token'" " as a named parameter." ) else: if not self.token and not self.password and not self.apikey: raise ValueError( "Did not find 'token', 'password' or 'apikey'," " please add an environment variable" " `WATSONX_TOKEN`, 'WATSONX_PASSWORD' or 'WATSONX_APIKEY' " "which contains it," " or pass 'token', 'password' or 'apikey'" " as a named parameter." ) elif self.token: check_for_attribute(self.token, "token", "WATSONX_TOKEN") elif self.password: check_for_attribute(self.password, "password", "WATSONX_PASSWORD") check_for_attribute(self.username, "username", "WATSONX_USERNAME") elif self.apikey: check_for_attribute(self.apikey, "apikey", "WATSONX_APIKEY") check_for_attribute(self.username, "username", "WATSONX_USERNAME") if not self.instance_id: check_for_attribute( self.instance_id, "instance_id", "WATSONX_INSTANCE_ID" ) credentials = Credentials( url=self.url.get_secret_value() if self.url else None, api_key=self.apikey.get_secret_value() if self.apikey else None, token=self.token.get_secret_value() if self.token else None, password=self.password.get_secret_value() if self.password else None, username=self.username.get_secret_value() if self.username else None, instance_id=self.instance_id.get_secret_value() if self.instance_id else None, version=self.version.get_secret_value() if self.version else None, verify=self.verify, ) watsonx_rerank = Rerank( model_id=self.model_id, credentials=credentials, params=self.params, project_id=self.project_id, space_id=self.space_id, verify=self.verify, ) self.watsonx_rerank = watsonx_rerank return self
[docs] def rerank( self, documents: Sequence[Union[str, Document, dict]], query: str, **kwargs: Any, ) -> List[Dict[str, Any]]: if len(documents) == 0: # to avoid empty api call return [] docs = [ doc.page_content if isinstance(doc, Document) else doc for doc in documents ] params = extract_params(kwargs, self.params) results = self.watsonx_rerank.generate( query=query, inputs=docs, **(kwargs | {"params": params}) ) result_dicts = [] for res in results["results"]: result_dicts.append( {"index": res.get("index"), "relevance_score": res.get("score")} ) return result_dicts
[docs] def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, **kwargs: Any, ) -> Sequence[Document]: """ Compress documents using watsonx's rerank API. Args: documents: A sequence of documents to compress. query: The query to use for compressing the documents. callbacks: Callbacks to run during the compression process. Returns: A sequence of compressed documents. """ compressed = [] for res in self.rerank(documents, query, **kwargs): doc = documents[res["index"]] doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata)) doc_copy.metadata["relevance_score"] = res["relevance_score"] compressed.append(doc_copy) return compressed