langchain_nvidia_ai_endpoints.embeddings ηš„ζΊδ»£η 

"""Embeddings Components Derived from NVEModel/Embeddings"""

from typing import Any, List, Literal, Optional

from langchain_core.embeddings import Embeddings
from langchain_core.outputs.llm_result import LLMResult
from pydantic import (
    BaseModel,
    ConfigDict,
    Field,
    PrivateAttr,
)

from langchain_nvidia_ai_endpoints._common import _NVIDIAClient
from langchain_nvidia_ai_endpoints._statics import Model
from langchain_nvidia_ai_endpoints.callbacks import usage_callback_var

_DEFAULT_MODEL_NAME: str = "nvidia/nv-embedqa-e5-v5"
_DEFAULT_BATCH_SIZE: int = 50


[docs] class NVIDIAEmbeddings(BaseModel, Embeddings): """ Client to NVIDIA embeddings models. Fields: - model: str, the name of the model to use - truncate: "NONE", "START", "END", truncate input text if it exceeds the model's maximum token length. Default is "NONE", which raises an error if an input is too long. """ model_config = ConfigDict( validate_assignment=True, ) _client: _NVIDIAClient = PrivateAttr() base_url: Optional[str] = Field( default=None, description="Base url for model listing an invocation", ) model: Optional[str] = Field(None, description="Name of the model to invoke") truncate: Literal["NONE", "START", "END"] = Field( default="NONE", description=( "Truncate input text if it exceeds the model's maximum token length. " "Default is 'NONE', which raises an error if an input is too long." ), ) max_batch_size: int = Field(default=_DEFAULT_BATCH_SIZE) def __init__(self, **kwargs: Any): """ Create a new NVIDIAEmbeddings embedder. This class provides access to a NVIDIA NIM for embedding. By default, it connects to a hosted NIM, but can be configured to connect to a local NIM using the `base_url` parameter. An API key is required to connect to the hosted NIM. Args: model (str): The model to use for embedding. nvidia_api_key (str): The API key to use for connecting to the hosted NIM. api_key (str): Alternative to nvidia_api_key. base_url (str): The base URL of the NIM to connect to. Format for base URL is http://host:port trucate (str): "NONE", "START", "END", truncate input text if it exceeds the model's context length. Default is "NONE", which raises an error if an input is too long. API Key: - The recommended way to provide the API key is through the `NVIDIA_API_KEY` environment variable. Base URL: - Connect to a self-hosted model with NVIDIA NIM using the `base_url` arg to link to the local host at localhost:8000: embedder = NVIDIAEmbeddings(base_url="http://localhost:8080/v1") """ super().__init__(**kwargs) # allow nvidia_base_url as an alternative for base_url base_url = kwargs.pop("nvidia_base_url", self.base_url) # allow nvidia_api_key as an alternative for api_key api_key = kwargs.pop("nvidia_api_key", kwargs.pop("api_key", None)) self._client = _NVIDIAClient( **({"base_url": base_url} if base_url else {}), # only pass if set mdl_name=self.model, default_hosted_model_name=_DEFAULT_MODEL_NAME, **({"api_key": api_key} if api_key else {}), # only pass if set infer_path="{base_url}/embeddings", cls=self.__class__.__name__, ) # todo: only store the model in one place # the model may be updated to a newer name during initialization self.model = self._client.mdl_name # same for base_url self.base_url = self._client.base_url @property def available_models(self) -> List[Model]: """ Get a list of available models that work with NVIDIAEmbeddings. """ return self._client.get_available_models(self.__class__.__name__)
[docs] @classmethod def get_available_models( cls, **kwargs: Any, ) -> List[Model]: """ Get a list of available models that work with NVIDIAEmbeddings. """ return cls(**kwargs).available_models
def _embed( self, texts: List[str], model_type: Literal["passage", "query"] ) -> List[List[float]]: """Embed a single text entry to either passage or query type""" # API Catalog API - # input: str | list[str] -- char limit depends on model # model: str -- model name, e.g. NV-Embed-QA # encoding_format: "float" | "base64" # input_type: "query" | "passage" # user: str -- ignored # truncate: "NONE" | "START" | "END" -- default "NONE", error raised if # an input is too long payload = { "input": texts, "model": self.model, "encoding_format": "float", "input_type": model_type, } if self.truncate: payload["truncate"] = self.truncate response = self._client.get_req( payload=payload, ) response.raise_for_status() result = response.json() data = result.get("data", result) if not isinstance(data, list): raise ValueError(f"Expected data with a list of embeddings. Got: {data}") embedding_list = [(res["embedding"], res["index"]) for res in data] self._invoke_callback_vars(result) return [x[0] for x in sorted(embedding_list, key=lambda x: x[1])]
[docs] def embed_query(self, text: str) -> List[float]: """Input pathway for query embeddings.""" return self._embed([text], model_type="query")[0]
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Input pathway for document embeddings.""" if not isinstance(texts, list) or not all( isinstance(text, str) for text in texts ): raise ValueError(f"`texts` must be a list of strings, given: {repr(texts)}") all_embeddings = [] for i in range(0, len(texts), self.max_batch_size): batch = texts[i : i + self.max_batch_size] all_embeddings.extend(self._embed(batch, model_type="passage")) return all_embeddings
def _invoke_callback_vars(self, response: dict) -> None: """Invoke the callback context variables if there are any.""" callback_vars = [ usage_callback_var.get(), ] llm_output = {**response, "model_name": self.model} result = LLMResult(generations=[[]], llm_output=llm_output) for cb_var in callback_vars: if cb_var: cb_var.on_llm_end(result)