langchain_openai.llms.azure ηš„ζΊδ»£η 

from __future__ import annotations

import logging
from typing import Any, Awaitable, Callable, Dict, List, Mapping, Optional, Union

import openai
from langchain_core.language_models import LangSmithParams
from langchain_core.utils import from_env, secret_from_env
from pydantic import Field, SecretStr, model_validator
from typing_extensions import Self, cast

from langchain_openai.llms.base import BaseOpenAI

logger = logging.getLogger(__name__)


[docs] class AzureOpenAI(BaseOpenAI): """Azure-specific OpenAI large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain_openai import AzureOpenAI openai = AzureOpenAI(model_name="gpt-3.5-turbo-instruct") """ azure_endpoint: Optional[str] = Field( default_factory=from_env("AZURE_OPENAI_ENDPOINT", default=None) ) """Your Azure endpoint, including the resource. Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided. Example: `https://example-resource.azure.openai.com/` """ deployment_name: Union[str, None] = Field(default=None, alias="azure_deployment") """A model deployment. If given sets the base client URL to include `/deployments/{azure_deployment}`. Note: this means you won't be able to use non-deployment endpoints. """ openai_api_version: Optional[str] = Field( alias="api_version", default_factory=from_env("OPENAI_API_VERSION", default=None), ) """Automatically inferred from env var `OPENAI_API_VERSION` if not provided.""" # Check OPENAI_KEY for backwards compatibility. # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using # other forms of azure credentials. openai_api_key: Optional[SecretStr] = Field( alias="api_key", default_factory=secret_from_env( ["AZURE_OPENAI_API_KEY", "OPENAI_API_KEY"], default=None ), ) azure_ad_token: Optional[SecretStr] = Field( default_factory=secret_from_env("AZURE_OPENAI_AD_TOKEN", default=None) ) """Your Azure Active Directory token. Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided. For more: https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id. """ azure_ad_token_provider: Union[Callable[[], str], None] = None """A function that returns an Azure Active Directory token. Will be invoked on every sync request. For async requests, will be invoked if `azure_ad_async_token_provider` is not provided. """ azure_ad_async_token_provider: Union[Callable[[], Awaitable[str]], None] = None """A function that returns an Azure Active Directory token. Will be invoked on every async request. """ openai_api_type: Optional[str] = Field( default_factory=from_env("OPENAI_API_TYPE", default="azure") ) """Legacy, for openai<1.0.0 support.""" validate_base_url: bool = True """For backwards compatibility. If legacy val openai_api_base is passed in, try to infer if it is a base_url or azure_endpoint and update accordingly. """ @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "llms", "openai"] @property def lc_secrets(self) -> Dict[str, str]: return { "openai_api_key": "AZURE_OPENAI_API_KEY", "azure_ad_token": "AZURE_OPENAI_AD_TOKEN", } @classmethod def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return True @model_validator(mode="after") def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" if self.n < 1: raise ValueError("n must be at least 1.") if self.streaming and self.n > 1: raise ValueError("Cannot stream results when n > 1.") if self.streaming and self.best_of > 1: raise ValueError("Cannot stream results when best_of > 1.") # For backwards compatibility. Before openai v1, no distinction was made # between azure_endpoint and base_url (openai_api_base). openai_api_base = self.openai_api_base if openai_api_base and self.validate_base_url: if "/openai" not in openai_api_base: self.openai_api_base = ( cast(str, self.openai_api_base).rstrip("/") + "/openai" ) raise ValueError( "As of openai>=1.0.0, Azure endpoints should be specified via " "the `azure_endpoint` param not `openai_api_base` " "(or alias `base_url`)." ) if self.deployment_name: raise ValueError( "As of openai>=1.0.0, if `deployment_name` (or alias " "`azure_deployment`) is specified then " "`openai_api_base` (or alias `base_url`) should not be. " "Instead use `deployment_name` (or alias `azure_deployment`) " "and `azure_endpoint`." ) self.deployment_name = None client_params: dict = { "api_version": self.openai_api_version, "azure_endpoint": self.azure_endpoint, "azure_deployment": self.deployment_name, "api_key": self.openai_api_key.get_secret_value() if self.openai_api_key else None, "azure_ad_token": self.azure_ad_token.get_secret_value() if self.azure_ad_token else None, "azure_ad_token_provider": self.azure_ad_token_provider, "organization": self.openai_organization, "base_url": self.openai_api_base, "timeout": self.request_timeout, "max_retries": self.max_retries, "default_headers": self.default_headers, "default_query": self.default_query, } if not self.client: sync_specific = {"http_client": self.http_client} self.client = openai.AzureOpenAI( **client_params, **sync_specific, # type: ignore[arg-type] ).completions if not self.async_client: async_specific = {"http_client": self.http_async_client} if self.azure_ad_async_token_provider: client_params["azure_ad_token_provider"] = ( self.azure_ad_async_token_provider ) self.async_client = openai.AsyncAzureOpenAI( **client_params, **async_specific, # type: ignore[arg-type] ).completions return self @property def _identifying_params(self) -> Mapping[str, Any]: return { **{"deployment_name": self.deployment_name}, **super()._identifying_params, } @property def _invocation_params(self) -> Dict[str, Any]: openai_params = {"model": self.deployment_name} return {**openai_params, **super()._invocation_params} def _get_ls_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> LangSmithParams: """Get standard params for tracing.""" params = super()._get_ls_params(stop=stop, **kwargs) invocation_params = self._invocation_params params["ls_provider"] = "azure" if model_name := invocation_params.get("model"): params["ls_model_name"] = model_name return params @property def _llm_type(self) -> str: """Return type of llm.""" return "azure" @property def lc_attributes(self) -> Dict[str, Any]: return { "openai_api_type": self.openai_api_type, "openai_api_version": self.openai_api_version, }