langchain_sema4.toolkits ηζΊδ»£η
"""Robocorp Action Server toolkit."""
from __future__ import annotations
import json
from typing import Any, Callable, Dict, List, Optional, TypedDict
from urllib.parse import urljoin
import requests
from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.callbacks.base import BaseCallbackHandler
from langchain_core.callbacks.manager import CallbackManager
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import Runnable, RunnablePassthrough
from langchain_core.tools import BaseTool, StructuredTool, Tool
from langchain_core.tracers.context import _tracing_v2_is_enabled
from langsmith import Client
from pydantic import BaseModel, ConfigDict, Field, PrivateAttr, create_model
from langchain_sema4._common import (
get_param_fields,
model_to_dict,
reduce_openapi_spec,
)
from langchain_sema4._prompts import (
API_CONTROLLER_PROMPT,
)
LLM_TRACE_HEADER = "X-action-trace"
[docs]
class RunDetailsCallbackHandler(BaseCallbackHandler):
"""Callback handler to add run details to the run."""
[docs]
def __init__(self, run_details: dict) -> None:
"""Initialize the callback handler.
Args:
run_details (dict): Run details.
"""
self.run_details = run_details
[docs]
def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
**kwargs: Any,
) -> None:
if "parent_run_id" in kwargs:
self.run_details["run_id"] = kwargs["parent_run_id"]
else:
if "run_id" in self.run_details:
self.run_details.pop("run_id")
[docs]
class ToolArgs(TypedDict):
"""Tool arguments."""
name: str
description: str
callback_manager: CallbackManager
[docs]
class ActionServerRequestTool(BaseTool):
"""Requests POST tool with LLM-instructed extraction of truncated responses."""
name: str = "action_server_request"
"""Tool name."""
description: str = "Useful to make requests to Action Server API"
"""Tool description."""
endpoint: str
""""Action API endpoint"""
action_request: Callable[[str], str]
"""Action request execution"""
def _run(
self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
try:
json_text = query[query.find("{") : query.rfind("}") + 1]
payload = json.loads(json_text)
except json.JSONDecodeError as e:
raise e
return self.action_request(self.endpoint, **payload["data"])
async def _arun(self, text: str) -> str:
raise NotImplementedError()
[docs]
class ActionServerToolkit(BaseModel):
"""Toolkit exposing Robocorp Action Server provided actions as individual tools."""
url: str = Field(exclude=True)
"""Action Server URL"""
api_key: str = Field(exclude=True, default="")
"""Action Server request API key"""
additional_headers: dict = Field(exclude=True, default_factory=dict)
"""Additional headers to be passed to the Action Server"""
report_trace: bool = Field(exclude=True, default=False)
"""Enable reporting Langsmith trace to Action Server runs"""
_run_details: dict = PrivateAttr({})
model_config = ConfigDict(
arbitrary_types_allowed=True,
)
[docs]
def get_tools(
self,
llm: Optional[BaseChatModel] = None,
callback_manager: Optional[CallbackManager] = None,
) -> List[BaseTool]:
"""
Get Action Server actions as a toolkit
:param llm: Optionally pass a model to return single input tools
:param callback_manager: Callback manager to be passed to tools
"""
# Fetch and format the API spec
try:
spec_url = urljoin(self.url, "openapi.json")
response = requests.get(spec_url)
json_spec = response.json()
api_spec = reduce_openapi_spec(self.url, json_spec)
except Exception:
raise ValueError(
f"Failed to fetch OpenAPI schema from Action Server - {self.url}"
)
# Prepare request tools
self._run_details: dict = {}
# Prepare callback manager
if callback_manager is None:
callback_manager = CallbackManager([])
callbacks: List[BaseCallbackHandler] = []
if _tracing_v2_is_enabled():
callbacks.append(RunDetailsCallbackHandler(self._run_details))
for callback in callbacks:
callback_manager.add_handler(callback)
toolkit: List[BaseTool] = []
# Prepare tools
for endpoint, docs in api_spec.endpoints:
if not endpoint.startswith("/api/actions"):
continue
tool_args: ToolArgs = {
"name": docs["operationId"],
"description": docs["description"],
"callback_manager": callback_manager,
}
if llm:
tool = self._get_unstructured_tool(endpoint, docs, tool_args, llm)
else:
tool = self._get_structured_tool(endpoint, docs, tool_args)
toolkit.append(tool)
return toolkit
def _get_unstructured_tool(
self,
endpoint: str,
docs: dict,
tool_args: ToolArgs,
llm: BaseChatModel,
) -> BaseTool:
request_tool = ActionServerRequestTool(
action_request=self._action_request, endpoint=endpoint
)
prompt_variables = {
"api_url": self.url,
}
tool_name = tool_args["name"]
tool_docs = json.dumps(docs, indent=4)
prompt_variables["api_docs"] = f"{tool_name}: \n{tool_docs}"
prompt = PromptTemplate(
template=API_CONTROLLER_PROMPT,
input_variables=["input"],
partial_variables=prompt_variables,
)
chain: Runnable = (
{"input": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
| request_tool
)
return Tool(func=chain.invoke, args_schema=ToolInputSchema, **tool_args)
def _get_structured_tool(
self, endpoint: str, docs: dict, tools_args: ToolArgs
) -> BaseTool:
fields = get_param_fields(docs)
_DynamicToolInputSchema = create_model("DynamicToolInputSchema", **fields)
def dynamic_func(**data: dict[str, Any]) -> str:
return self._action_request(endpoint, **model_to_dict(data))
dynamic_func.__name__ = tools_args["name"]
dynamic_func.__doc__ = tools_args["description"]
return StructuredTool(
func=dynamic_func,
args_schema=_DynamicToolInputSchema,
**tools_args,
)
def _action_request(self, endpoint: str, **data: dict[str, Any]) -> str:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
**self.additional_headers,
}
try:
if self.report_trace and "run_id" in self._run_details:
client = Client()
run = client.read_run(self._run_details["run_id"])
if run.url:
headers[LLM_TRACE_HEADER] = run.url
except Exception:
pass
url = urljoin(self.url, endpoint)
response = requests.post(url, headers=headers, data=json.dumps(data))
return response.text