langchain_text_splitters.sentence_transformers ηš„ζΊδ»£η 

from __future__ import annotations

from typing import Any, List, Optional, cast

from langchain_text_splitters.base import TextSplitter, Tokenizer, split_text_on_tokens


[docs] class SentenceTransformersTokenTextSplitter(TextSplitter): """Splitting text to tokens using sentence model tokenizer."""
[docs] def __init__( self, chunk_overlap: int = 50, model_name: str = "sentence-transformers/all-mpnet-base-v2", tokens_per_chunk: Optional[int] = None, **kwargs: Any, ) -> None: """Create a new TextSplitter.""" super().__init__(**kwargs, chunk_overlap=chunk_overlap) try: from sentence_transformers import SentenceTransformer except ImportError: raise ImportError( "Could not import sentence_transformers python package. " "This is needed in order to for SentenceTransformersTokenTextSplitter. " "Please install it with `pip install sentence-transformers`." ) self.model_name = model_name self._model = SentenceTransformer(self.model_name) self.tokenizer = self._model.tokenizer self._initialize_chunk_configuration(tokens_per_chunk=tokens_per_chunk)
def _initialize_chunk_configuration( self, *, tokens_per_chunk: Optional[int] ) -> None: self.maximum_tokens_per_chunk = cast(int, self._model.max_seq_length) if tokens_per_chunk is None: self.tokens_per_chunk = self.maximum_tokens_per_chunk else: self.tokens_per_chunk = tokens_per_chunk if self.tokens_per_chunk > self.maximum_tokens_per_chunk: raise ValueError( f"The token limit of the models '{self.model_name}'" f" is: {self.maximum_tokens_per_chunk}." f" Argument tokens_per_chunk={self.tokens_per_chunk}" f" > maximum token limit." )
[docs] def split_text(self, text: str) -> List[str]: """Splits the input text into smaller components by splitting text on tokens. This method encodes the input text using a private `_encode` method, then strips the start and stop token IDs from the encoded result. It returns the processed segments as a list of strings. Args: text (str): The input text to be split. Returns: List[str]: A list of string components derived from the input text after encoding and processing. """ def encode_strip_start_and_stop_token_ids(text: str) -> List[int]: return self._encode(text)[1:-1] tokenizer = Tokenizer( chunk_overlap=self._chunk_overlap, tokens_per_chunk=self.tokens_per_chunk, decode=self.tokenizer.decode, encode=encode_strip_start_and_stop_token_ids, ) return split_text_on_tokens(text=text, tokenizer=tokenizer)
[docs] def count_tokens(self, *, text: str) -> int: """Counts the number of tokens in the given text. This method encodes the input text using a private `_encode` method and calculates the total number of tokens in the encoded result. Args: text (str): The input text for which the token count is calculated. Returns: int: The number of tokens in the encoded text. """ return len(self._encode(text))
_max_length_equal_32_bit_integer: int = 2**32 def _encode(self, text: str) -> List[int]: token_ids_with_start_and_end_token_ids = self.tokenizer.encode( text, max_length=self._max_length_equal_32_bit_integer, truncation="do_not_truncate", ) return token_ids_with_start_and_end_token_ids