langchain_voyageai.rerank ηš„ζΊδ»£η 

from __future__ import annotations

import os
from copy import deepcopy
from typing import Any, Dict, Optional, Sequence, Union

import voyageai  # type: ignore
from langchain_core.callbacks.manager import Callbacks
from langchain_core.documents import Document
from langchain_core.documents.compressor import BaseDocumentCompressor
from langchain_core.utils import convert_to_secret_str
from pydantic import ConfigDict, SecretStr, model_validator
from voyageai.object import RerankingObject  # type: ignore


[docs] class VoyageAIRerank(BaseDocumentCompressor): """Document compressor that uses `VoyageAI Rerank API`.""" client: voyageai.Client = None # type: ignore aclient: voyageai.AsyncClient = None # type: ignore """VoyageAI clients to use for compressing documents.""" voyage_api_key: Optional[SecretStr] = None """VoyageAI API key. Must be specified directly or via environment variable VOYAGE_API_KEY.""" model: str """Model to use for reranking.""" top_k: Optional[int] = None """Number of documents to return.""" truncation: bool = True model_config = ConfigDict( arbitrary_types_allowed=True, ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" voyage_api_key = values.get("voyage_api_key") or os.getenv( "VOYAGE_API_KEY", None ) if voyage_api_key: api_key_secretstr = convert_to_secret_str(voyage_api_key) values["voyage_api_key"] = api_key_secretstr api_key_str = api_key_secretstr.get_secret_value() else: api_key_str = None values["client"] = voyageai.Client(api_key=api_key_str) values["aclient"] = voyageai.AsyncClient(api_key=api_key_str) return values def _rerank( self, documents: Sequence[Union[str, Document]], query: str, ) -> RerankingObject: """Returns an ordered list of documents ordered by their relevance to the provided query. Args: query: The query to use for reranking. documents: A sequence of documents to rerank. """ docs = [ doc.page_content if isinstance(doc, Document) else doc for doc in documents ] return self.client.rerank( query=query, documents=docs, model=self.model, top_k=self.top_k, truncation=self.truncation, ) async def _arerank( self, documents: Sequence[Union[str, Document]], query: str, ) -> RerankingObject: """Returns an ordered list of documents ordered by their relevance to the provided query. Args: query: The query to use for reranking. documents: A sequence of documents to rerank. """ docs = [ doc.page_content if isinstance(doc, Document) else doc for doc in documents ] return await self.aclient.rerank( query=query, documents=docs, model=self.model, top_k=self.top_k, truncation=self.truncation, )
[docs] def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """ Compress documents using VoyageAI's rerank API. Args: documents: A sequence of documents to compress. query: The query to use for compressing the documents. callbacks: Callbacks to run during the compression process. Returns: A sequence of compressed documents in relevance_score order. """ if len(documents) == 0: return [] compressed = [] for res in self._rerank(documents, query).results: doc = documents[res.index] doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata)) doc_copy.metadata["relevance_score"] = res.relevance_score compressed.append(doc_copy) return compressed
[docs] async def acompress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """ Compress documents using VoyageAI's rerank API. Args: documents: A sequence of documents to compress. query: The query to use for compressing the documents. callbacks: Callbacks to run during the compression process. Returns: A sequence of compressed documents in relevance_score order. """ if len(documents) == 0: return [] compressed = [] for res in (await self._arerank(documents, query)).results: doc = documents[res.index] doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata)) doc_copy.metadata["relevance_score"] = res.relevance_score compressed.append(doc_copy) return compressed