上下文#
- class langchain_core.beta.runnables.context.Context[来源]#
可运行任务的上下文。
Context 类提供了用于在可运行对象中创建上下文范围、获取器和设置器的方法。它允许在程序执行过程中管理和访问上下文信息。
示例
from langchain_core.beta.runnables.context import Context from langchain_core.runnables.passthrough import RunnablePassthrough from langchain_core.prompts.prompt import PromptTemplate from langchain_core.output_parsers.string import StrOutputParser from tests.unit_tests.fake.llm import FakeListLLM chain = ( Context.setter("input") | { "context": RunnablePassthrough() | Context.setter("context"), "question": RunnablePassthrough(), } | PromptTemplate.from_template("{context} {question}") | FakeListLLM(responses=["hello"]) | StrOutputParser() | { "result": RunnablePassthrough(), "context": Context.getter("context"), "input": Context.getter("input"), } ) # Use the chain output = chain.invoke("What's your name?") print(output["result"]) # Output: "hello" print(output["context"]) # Output: "What's your name?" print(output["input"]) # Output: "What's your name?
方法
create_scope
(scope, /)创建一个上下文范围。
getter
(key, /)setter
([_key, _value])- static create_scope(scope: str, /) PrefixContext [source]#
创建一个上下文范围。
- Parameters:
scope (str) – 范围。
- Returns:
上下文范围。
- Return type:
- static getter(key: str | list[str], /) ContextGet [source]#
- Parameters:
key (str | list[str])
- Return type:
- static setter(_key: str | None = None, _value: Runnable[Input, Output] | Callable[[Input], Output] | Callable[[Input], Awaitable[Output]] | Any | None = None, /, **kwargs: Runnable[Input, Output] | Callable[[Input], Output] | Callable[[Input], Awaitable[Output]] | Any) ContextSet [源代码]#
- Parameters:
- Return type: