create_structured_runnable#
- langchain_google_vertexai.chains.create_structured_runnable(function: Type[BaseModel] | Sequence[Type[BaseModel]], llm: Runnable, *, prompt: BasePromptTemplate | None = None, use_extra_step: bool = False) Runnable [source]#
创建一个使用OpenAI函数的可运行序列。
- Parameters:
function (Type[BaseModel] | Sequence[Type[BaseModel]]) – 可以是一个单一的 pydantic.BaseModel 类或一个 pydantic.BaseModels 类的序列。 为了获得最佳效果,pydantic.BaseModels 应该包含参数的描述。
llm (Runnable) – 使用的语言模型,假设支持Google Vertex函数调用API。
prompt (BasePromptTemplate | None) – 传递给模型的BasePromptTemplate。
use_extra_step (bool) – 是否进行额外步骤以将输出解析为函数
- Returns:
一个可运行的序列,当运行时将给定的函数传递给模型。
- Return type:
示例
from typing import Optional from langchain_google_vertexai import ChatVertexAI, create_structured_runnable from langchain_core.prompts import ChatPromptTemplate from pydantic import BaseModel, Field class RecordPerson(BaseModel): """Record some identifying information about a person.""" name: str = Field(..., description="The person's name") age: int = Field(..., description="The person's age") fav_food: Optional[str] = Field(None, description="The person's favorite food") class RecordDog(BaseModel): """Record some identifying information about a dog.""" name: str = Field(..., description="The dog's name") color: str = Field(..., description="The dog's color") fav_food: Optional[str] = Field(None, description="The dog's favorite food") llm = ChatVertexAI(model_name="gemini-pro") prompt = ChatPromptTemplate.from_template(""" You are a world class algorithm for recording entities. Make calls to the relevant function to record the entities in the following input: {input} Tip: Make sure to answer in the correct format""" ) chain = create_structured_runnable([RecordPerson, RecordDog], llm, prompt=prompt) chain.invoke({"input": "Harry was a chubby brown beagle who loved chicken"}) # -> RecordDog(name="Harry", color="brown", fav_food="chicken")