对话摘要缓冲记忆#
- class langchain.memory.summary_buffer.ConversationSummaryBufferMemory[source]#
基础类:
BaseChatMemory
,SummarizerMixin
自版本0.3.1起已弃用:请参阅迁移指南:https://python.langchain.com/docs/versions/migrating_memory/ 在langchain==1.0.0之前不会移除。
带有总结器的缓冲区,用于存储对话记忆。
提供对话的运行摘要以及对话中的最新消息,条件是对话中的总令牌数不超过某个限制。
- param ai_prefix: str = 'AI'#
- param chat_memory: BaseChatMessageHistory [Optional]#
- param human_prefix: str = 'Human'#
- param input_key: str | None = None#
- param llm: BaseLanguageModel [Required]#
- param max_token_limit: int = 2000#
- param memory_key: str = 'history'#
- param moving_summary_buffer: str = ''#
- param output_key: str | None = None#
- param prompt: BasePromptTemplate = PromptTemplate(input_variables=['new_lines', 'summary'], input_types={}, partial_variables={}, template='Progressively summarize the lines of conversation provided, adding onto the previous summary returning a new summary.\n\nEXAMPLE\nCurrent summary:\nThe human asks what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is a force for good.\n\nNew lines of conversation:\nHuman: Why do you think artificial intelligence is a force for good?\nAI: Because artificial intelligence will help humans reach their full potential.\n\nNew summary:\nThe human asks what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is a force for good because it will help humans reach their full potential.\nEND OF EXAMPLE\n\nCurrent summary:\n{summary}\n\nNew lines of conversation:\n{new_lines}\n\nNew summary:')#
- param return_messages: bool = False#
- param summary_message_cls: Type[BaseMessage] = <class 'langchain_core.messages.system.SystemMessage'>#
- async abuffer() str | List[BaseMessage] [source]#
异步内存缓冲区。
- Return type:
str | 列表[BaseMessage]
- async aload_memory_variables(inputs: Dict[str, Any]) Dict[str, Any] [source]#
异步返回给定链的文本输入的键值对。
- Parameters:
输入 (字典[字符串, 任意类型])
- Return type:
Dict[str, Any]
- async apredict_new_summary(messages: List[BaseMessage], existing_summary: str) str #
- Parameters:
messages (List[BaseMessage])
existing_summary (str)
- Return type:
字符串
- async asave_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None [source]#
异步保存此对话的上下文到缓冲区。
- Parameters:
inputs (Dict[str, Any])
outputs (Dict[str, str])
- Return type:
无
- load_memory_variables(inputs: Dict[str, Any]) Dict[str, Any] [source]#
返回历史缓冲区。
- Parameters:
输入 (字典[字符串, 任意类型])
- Return type:
Dict[str, Any]
- predict_new_summary(messages: List[BaseMessage], existing_summary: str) str #
- Parameters:
messages (List[BaseMessage])
existing_summary (str)
- Return type:
字符串
- save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None [source]#
将此对话的上下文保存到缓冲区。
- Parameters:
inputs (Dict[str, Any])
outputs (Dict[str, str])
- Return type:
无
- classmethod validate_prompt_input_variables(values: Dict) Dict [source]#
验证提示输入变量是否一致。
- Parameters:
值 (字典)
- Return type:
字典
- property buffer: str | List[BaseMessage]#
内存的字符串缓冲区。