langchain_cohere.react_multi_hop.prompt ηš„ζΊδ»£η 

from __future__ import annotations

from datetime import datetime
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Mapping,
    MutableMapping,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
)

from langchain_core.agents import AgentAction, AgentActionMessageLog
from langchain_core.messages import AIMessage, BaseMessage, SystemMessage
from langchain_core.prompts import (
    BasePromptTemplate,
    ChatPromptTemplate,
    PromptTemplate,
)
from langchain_core.tools import BaseTool
from pydantic import BaseModel

from langchain_cohere.react_multi_hop.default_prompt_constants import (
    _SpecialToken,
    default_basic_rules,
    default_multi_hop_instruction,
    default_safety_rules,
    default_style_guide,
    default_task_context,
)
from langchain_cohere.utils import (
    JSON_TO_PYTHON_TYPES,
    _remove_signature_from_tool_description,
)

multi_hop_prompt_partial = PromptTemplate.from_template(
    """{structured_preamble}

## Available Tools
Here is a list of tools that you have available to you:

{tools}{end_turn}{history}{user_prompt}{start_turn}{system_role}{multi_hop_instruction}{end_turn}{steps}"""
).partial(
    start_turn=_SpecialToken.start_turn.value,
    end_turn=_SpecialToken.end_turn.value,
    system_role=_SpecialToken.role_system.value,
    multi_hop_instruction=default_multi_hop_instruction,
)


[docs] def render_structured_preamble( preamble: Optional[str] = None, ) -> str: """Renders the structured preamble part of the prompt content.""" if preamble is None: default_preamble = """## Task And Context {task_and_context} ## Style Guide {style_guide}""" preamble = default_preamble.format( task_and_context=default_task_context.format( now=datetime.now().strftime("%A, %B %d, %Y %H:%M:%S") ), style_guide=default_style_guide, ) structured_preamble_template = """{prompt_start}# Safety Preamble {safety_rules} # System Preamble ## Basic Rules {basic_rules} # User Preamble {preamble}""" return structured_preamble_template.format( prompt_start=f"{_SpecialToken.bos.value}{_SpecialToken.start_turn.value}{_SpecialToken.role_system.value}", safety_rules=default_safety_rules, basic_rules=default_basic_rules, preamble=preamble, )
[docs] def render_tool( tool: Optional[BaseTool] = None, json_schema: Optional[Dict] = None, ) -> str: """Renders a tool into prompt content. Either a BaseTool instance, or, a JSON schema must be provided. Args: tool: An instance of a BaseTool. json_schema: A dictionary containing the JSON schema representation of a tool. Returns: A string of prompt content. Example: .. code-block:: python from langchain_cohere.react_multi_hop.prompt import render_tool json_schema = { "name": "example_tool", "description": "A description of example_tool", "parameters": { "type": "object", "properties": { "foo": {"type": "string", "description": "A description of foo"}, "bar": {"type": "integer", "description": "A description of bar"}, }, "required": ["foo"], }, } print(render_tool(json_schema=json_schema)) tool = MyTool() print(render_tool(tool=tool)) """ template = """```python {tool_signature} \"\"\"{tool_description}{tool_args} \"\"\" pass ```""" assert ( tool is not None or json_schema is not None ), "Either a BaseTool instance or JSON schema must be provided." if tool is not None: assert tool is not None # for type checkers tool_name = tool.name tool_description = tool.description tool_args = tool.args required_parameters = [] for parameter_name, parameter_definition in tool_args.items(): if "default" not in parameter_definition: required_parameters.append(parameter_name) else: assert json_schema is not None # for type checkers tool_name = json_schema.get("name", "") tool_description = json_schema.get("description", "") tool_args = json_schema.get("parameters", {}).get("properties", {}) required_parameters = json_schema.get("parameters", {}).get("required", []) return template.format( tool_signature=_render_tool_signature( tool_name=tool_name, tool_args=tool_args, required_parameters=required_parameters, ), tool_description=_remove_signature_from_tool_description( name=tool_name, description=tool_description ), tool_args=_render_tool_args( tool_args=tool_args, required_parameters=required_parameters ), )
[docs] def render_observations( observations: Union[List[Mapping[str, str]], List[str], Mapping[str, str], str], index: int, ) -> Tuple[BaseMessage, int]: """Renders the 'output' part of an Agent's intermediate step into prompt content.""" documents = convert_to_documents(observations) rendered_documents: List[str] = [] document_prompt = """Document: {index} {fields}""" for doc in documents: # Render document fields into Key: value strings. fields: List[str] = [] for k, v in doc.items(): if k.lower() == "url": # 'url' is a special key which is always upper case. k = "URL" else: # keys are otherwise transformed into title case. k = k.title() fields.append(f"{k}: {v}") rendered_documents.append( document_prompt.format( index=index, fields="\n".join(fields), ) ) index += 1 prompt_content = "<results>\n" + "\n\n".join(rendered_documents) + "\n</results>" return SystemMessage(content=prompt_content), index
[docs] def convert_to_documents( observations: Any, ) -> List[MutableMapping]: """Converts observations into a 'document' dict""" documents: List[MutableMapping] = [] if isinstance(observations, str): # strings are turned into a key/value pair and a key of 'output' is added. observations = [{"output": observations}] elif isinstance(observations, Mapping): # single mappings are transformed into a list to simplify the rest of the code. observations = [observations] elif not isinstance(observations, Sequence): # all other types are turned into a key/value pair within a list observations = [{"output": observations}] for doc in observations: if not isinstance(doc, Mapping): # types that aren't Mapping are turned into a key/value pair. doc = {"output": doc} documents.append(doc) return documents
[docs] def render_intermediate_steps( intermediate_steps: List[Tuple[AgentAction, Any]], ) -> str: """Renders an agent's intermediate steps into prompt content.""" prompt_content = "" if any( not isinstance(action, AgentActionMessageLog) for action, _ in intermediate_steps ): raise ValueError("all AgentAction steps must implement AgentActionMessageLog") i = 0 for action, observation in intermediate_steps: prompt_content += render_messages(action.messages) if observation: prompt_content += "\n" observation_message, i = render_observations(observation, i) prompt_content += render_messages([observation_message]) # Always add an 'open' chatbot turn because prompts for the current turn always end # with an open turn. prompt_content += ( f"{_SpecialToken.start_turn.value}{_SpecialToken.role_chatbot.value}" ) return prompt_content
[docs] def multi_hop_prompt( tools: Sequence[BaseTool], prompt: ChatPromptTemplate ) -> Callable[[Dict], BasePromptTemplate]: """The returned function produces a BasePromptTemplate suitable for multi-hop.""" # the directly_answer tool is used internally by the model, but never produces an # AgentAction, so we only need to add it to the prompt. tools = list(tools) tools.insert(0, create_directly_answer_tool()) def inner(x: Dict) -> BasePromptTemplate: return multi_hop_prompt_partial.partial( structured_preamble=render_structured_preamble( preamble=x.get("preamble", None) ), tools="\n\n".join([render_tool(t) for t in tools]), user_prompt=render_messages(prompt.invoke(x).to_messages()), steps=render_intermediate_steps(x["intermediate_steps"]), history=render_messages(x.get("chat_history", [])), ) return inner
def _render_type(type_: str, is_optional: bool) -> str: """ Renders a tool's type into prompt content. Types should be Python types, but JSON schema is allowed and converted. """ python_type = JSON_TO_PYTHON_TYPES.get(type_, type_) if is_optional: return f"Optional[{python_type}]" else: return python_type def _render_tool_signature( tool_name: str, tool_args: Dict, required_parameters: List ) -> str: """Renders the signature of a tool into prompt content.""" args = [] for parameter_name, parameter_definition in tool_args.items(): type_ = _render_type( type_=parameter_definition.get("type"), is_optional=parameter_name not in required_parameters, ) args.append(f"{parameter_name}: {type_}") signature = ", ".join(args) return f"def {tool_name}({signature}) -> List[Dict]:" def _render_tool_args(tool_args: Dict, required_parameters: List[str]) -> str: """Renders the 'Args' section of a tool's prompt content.""" if not tool_args: return "" indent = " " prompt_content = f"\n\n{indent * 4}Args:\n{indent * 8}" rendered_args = [] for parameter_name, parameter_definition in tool_args.items(): type_ = _render_type( type_=parameter_definition.get("type"), is_optional=parameter_name not in required_parameters, ) description = parameter_definition.get("description", "") rendered_args.append(f"{parameter_name} ({type_}): {description}") prompt_content += f"\n{indent * 8}".join(rendered_args) return prompt_content
[docs] def create_directly_answer_tool() -> BaseTool: """ directly_answer is a special tool that's always presented to the model as an available tool. The model only ever invokes this whilst answering and no AgentAction is produced, so it only needs to be added to the prompt. """ class DirectlyAnswerTool(BaseTool): class InputSchema(BaseModel): pass name: str = "directly_answer" description: str = "Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history" # noqa: E501 args_schema: Type[BaseModel] = InputSchema @property def args(self) -> dict: return {} def _run(self, *args: Any, **kwargs: Any) -> Any: raise NotImplementedError() return DirectlyAnswerTool()
[docs] def render_role(message: BaseMessage) -> str: """Renders the role of a message into prompt content.""" if isinstance(message, AIMessage): return _SpecialToken.role_chatbot.value elif isinstance(message, SystemMessage): return _SpecialToken.role_system.value else: return _SpecialToken.role_user.value
[docs] def render_messages(messages: Sequence[BaseMessage]) -> str: """Renders one or more BaseMessage implementations into prompt content.""" return "".join( [ f"{_SpecialToken.start_turn.value}{render_role(message)}{message.content}{_SpecialToken.end_turn.value}" for message in messages ] )