langchain_community.chat_models.friendli ηš„ζΊδ»£η 

from __future__ import annotations

from typing import Any, AsyncIterator, Dict, Iterator, List, Optional

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    ChatMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult

from langchain_community.llms.friendli import BaseFriendli


[docs] def get_role(message: BaseMessage) -> str: """Get role of the message. Args: message (BaseMessage): The message object. Raises: ValueError: Raised when the message is of an unknown type. Returns: str: The role of the message. """ if isinstance(message, ChatMessage) or isinstance(message, HumanMessage): return "user" if isinstance(message, AIMessage): return "assistant" if isinstance(message, SystemMessage): return "system" raise ValueError(f"Got unknown type {message}")
[docs] def get_chat_request(messages: List[BaseMessage]) -> Dict[str, Any]: """Get a request of the Friendli chat API. Args: messages (List[BaseMessage]): Messages comprising the conversation so far. Returns: Dict[str, Any]: The request for the Friendli chat API. """ return { "messages": [ {"role": get_role(message), "content": message.content} for message in messages ] }
[docs] class ChatFriendli(BaseChatModel, BaseFriendli): """Friendli LLM for chat. ``friendli-client`` package should be installed with `pip install friendli-client`. You must set ``FRIENDLI_TOKEN`` environment variable or provide the value of your personal access token for the ``friendli_token`` argument. Example: .. code-block:: python from langchain_community.chat_models import FriendliChat chat = Friendli( model="meta-llama-3.1-8b-instruct", friendli_token="YOUR FRIENDLI TOKEN" ) chat.invoke("What is generative AI?") """ model: str = "meta-llama-3.1-8b-instruct" @property def lc_secrets(self) -> Dict[str, str]: return {"friendli_token": "FRIENDLI_TOKEN"} @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Friendli completions API.""" return { "frequency_penalty": self.frequency_penalty, "presence_penalty": self.presence_penalty, "max_tokens": self.max_tokens, "stop": self.stop, "temperature": self.temperature, "top_p": self.top_p, } @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {"model": self.model, **self._default_params} @property def _llm_type(self) -> str: return "friendli-chat" def _get_invocation_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> Dict[str, Any]: """Get the parameters used to invoke the model.""" params = self._default_params if self.stop is not None and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop is not None: params["stop"] = self.stop else: params["stop"] = stop return {**params, **kwargs} def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: params = self._get_invocation_params(stop=stop, **kwargs) stream = self.client.chat.completions.create( **get_chat_request(messages), stream=True, model=self.model, **params ) for chunk in stream: delta = chunk.choices[0].delta.content if delta: if run_manager: run_manager.on_llm_new_token(delta) yield ChatGenerationChunk(message=AIMessageChunk(content=delta)) async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: params = self._get_invocation_params(stop=stop, **kwargs) stream = await self.async_client.chat.completions.create( **get_chat_request(messages), stream=True, model=self.model, **params ) async for chunk in stream: delta = chunk.choices[0].delta.content if delta: if run_manager: await run_manager.on_llm_new_token(delta) yield ChatGenerationChunk(message=AIMessageChunk(content=delta)) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return generate_from_stream(stream_iter) params = self._get_invocation_params(stop=stop, **kwargs) response = self.client.chat.completions.create( messages=[ { "role": get_role(message), "content": message.content, } for message in messages ], stream=False, model=self.model, **params, ) message = AIMessage(content=response.choices[0].message.content) return ChatResult(generations=[ChatGeneration(message=message)]) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: stream_iter = self._astream( messages, stop=stop, run_manager=run_manager, **kwargs ) return await agenerate_from_stream(stream_iter) params = self._get_invocation_params(stop=stop, **kwargs) response = await self.async_client.chat.completions.create( messages=[ { "role": get_role(message), "content": message.content, } for message in messages ], stream=False, model=self.model, **params, ) message = AIMessage(content=response.choices[0].message.content) return ChatResult(generations=[ChatGeneration(message=message)])