from __future__ import annotations
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
BaseChatModel,
agenerate_from_stream,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
ChatMessage,
HumanMessage,
SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_community.llms.friendli import BaseFriendli
[docs]
def get_role(message: BaseMessage) -> str:
"""Get role of the message.
Args:
message (BaseMessage): The message object.
Raises:
ValueError: Raised when the message is of an unknown type.
Returns:
str: The role of the message.
"""
if isinstance(message, ChatMessage) or isinstance(message, HumanMessage):
return "user"
if isinstance(message, AIMessage):
return "assistant"
if isinstance(message, SystemMessage):
return "system"
raise ValueError(f"Got unknown type {message}")
[docs]
def get_chat_request(messages: List[BaseMessage]) -> Dict[str, Any]:
"""Get a request of the Friendli chat API.
Args:
messages (List[BaseMessage]): Messages comprising the conversation so far.
Returns:
Dict[str, Any]: The request for the Friendli chat API.
"""
return {
"messages": [
{"role": get_role(message), "content": message.content}
for message in messages
]
}
[docs]
class ChatFriendli(BaseChatModel, BaseFriendli):
"""Friendli LLM for chat.
``friendli-client`` package should be installed with `pip install friendli-client`.
You must set ``FRIENDLI_TOKEN`` environment variable or provide the value of your
personal access token for the ``friendli_token`` argument.
Example:
.. code-block:: python
from langchain_community.chat_models import FriendliChat
chat = Friendli(
model="meta-llama-3.1-8b-instruct", friendli_token="YOUR FRIENDLI TOKEN"
)
chat.invoke("What is generative AI?")
"""
model: str = "meta-llama-3.1-8b-instruct"
@property
def lc_secrets(self) -> Dict[str, str]:
return {"friendli_token": "FRIENDLI_TOKEN"}
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Friendli completions API."""
return {
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"max_tokens": self.max_tokens,
"stop": self.stop,
"temperature": self.temperature,
"top_p": self.top_p,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {"model": self.model, **self._default_params}
@property
def _llm_type(self) -> str:
return "friendli-chat"
def _get_invocation_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> Dict[str, Any]:
"""Get the parameters used to invoke the model."""
params = self._default_params
if self.stop is not None and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
elif self.stop is not None:
params["stop"] = self.stop
else:
params["stop"] = stop
return {**params, **kwargs}
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
params = self._get_invocation_params(stop=stop, **kwargs)
stream = self.client.chat.completions.create(
**get_chat_request(messages), stream=True, model=self.model, **params
)
for chunk in stream:
delta = chunk.choices[0].delta.content
if delta:
if run_manager:
run_manager.on_llm_new_token(delta)
yield ChatGenerationChunk(message=AIMessageChunk(content=delta))
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
params = self._get_invocation_params(stop=stop, **kwargs)
stream = await self.async_client.chat.completions.create(
**get_chat_request(messages), stream=True, model=self.model, **params
)
async for chunk in stream:
delta = chunk.choices[0].delta.content
if delta:
if run_manager:
await run_manager.on_llm_new_token(delta)
yield ChatGenerationChunk(message=AIMessageChunk(content=delta))
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
params = self._get_invocation_params(stop=stop, **kwargs)
response = self.client.chat.completions.create(
messages=[
{
"role": get_role(message),
"content": message.content,
}
for message in messages
],
stream=False,
model=self.model,
**params,
)
message = AIMessage(content=response.choices[0].message.content)
return ChatResult(generations=[ChatGeneration(message=message)])
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
stream_iter = self._astream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return await agenerate_from_stream(stream_iter)
params = self._get_invocation_params(stop=stop, **kwargs)
response = await self.async_client.chat.completions.create(
messages=[
{
"role": get_role(message),
"content": message.content,
}
for message in messages
],
stream=False,
model=self.model,
**params,
)
message = AIMessage(content=response.choices[0].message.content)
return ChatResult(generations=[ChatGeneration(message=message)])