langchain_core.documents.transformers ηš„ζΊδ»£η 

from __future__ import annotations

from abc import ABC, abstractmethod
from collections.abc import Sequence
from typing import TYPE_CHECKING, Any

from langchain_core.runnables.config import run_in_executor

if TYPE_CHECKING:
    from langchain_core.documents import Document


[docs] class BaseDocumentTransformer(ABC): """Abstract base class for document transformation. A document transformation takes a sequence of Documents and returns a sequence of transformed Documents. Example: .. code-block:: python class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel): embeddings: Embeddings similarity_fn: Callable = cosine_similarity similarity_threshold: float = 0.95 class Config: arbitrary_types_allowed = True def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: stateful_documents = get_stateful_documents(documents) embedded_documents = _get_embeddings_from_stateful_docs( self.embeddings, stateful_documents ) included_idxs = _filter_similar_embeddings( embedded_documents, self.similarity_fn, self.similarity_threshold ) return [stateful_documents[i] for i in sorted(included_idxs)] async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: raise NotImplementedError """ # noqa: E501
[docs] @abstractmethod def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Transform a list of documents. Args: documents: A sequence of Documents to be transformed. Returns: A sequence of transformed Documents. """
[docs] async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Asynchronously transform a list of documents. Args: documents: A sequence of Documents to be transformed. Returns: A sequence of transformed Documents. """ return await run_in_executor( None, self.transform_documents, documents, **kwargs )