langchain_core.messages.function ηš„ζΊδ»£η 

from typing import Any, Literal

from langchain_core.messages.base import (
    BaseMessage,
    BaseMessageChunk,
    merge_content,
)
from langchain_core.utils._merge import merge_dicts


[docs] class FunctionMessage(BaseMessage): """Message for passing the result of executing a tool back to a model. FunctionMessage are an older version of the ToolMessage schema, and do not contain the tool_call_id field. The tool_call_id field is used to associate the tool call request with the tool call response. This is useful in situations where a chat model is able to request multiple tool calls in parallel. """ name: str """The name of the function that was executed.""" type: Literal["function"] = "function" """The type of the message (used for serialization). Defaults to "function".""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"].""" return ["langchain", "schema", "messages"]
FunctionMessage.model_rebuild()
[docs] class FunctionMessageChunk(FunctionMessage, BaseMessageChunk): """Function Message chunk.""" # Ignoring mypy re-assignment here since we're overriding the value # to make sure that the chunk variant can be discriminated from the # non-chunk variant. type: Literal["FunctionMessageChunk"] = "FunctionMessageChunk" # type: ignore[assignment] """The type of the message (used for serialization). Defaults to "FunctionMessageChunk".""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"].""" return ["langchain", "schema", "messages"] def __add__(self, other: Any) -> BaseMessageChunk: # type: ignore if isinstance(other, FunctionMessageChunk): if self.name != other.name: msg = "Cannot concatenate FunctionMessageChunks with different names." raise ValueError(msg) return self.__class__( name=self.name, content=merge_content(self.content, other.content), additional_kwargs=merge_dicts( self.additional_kwargs, other.additional_kwargs ), response_metadata=merge_dicts( self.response_metadata, other.response_metadata ), id=self.id, ) return super().__add__(other)