langchain_core.output_parsers.base ηš„ζΊδ»£η 

from __future__ import annotations

import contextlib
from abc import ABC, abstractmethod
from typing import (
    TYPE_CHECKING,
    Any,
    Generic,
    Optional,
    TypeVar,
    Union,
)

from typing_extensions import override

from langchain_core.language_models import LanguageModelOutput
from langchain_core.messages import AnyMessage, BaseMessage
from langchain_core.outputs import ChatGeneration, Generation
from langchain_core.runnables import Runnable, RunnableConfig, RunnableSerializable
from langchain_core.runnables.config import run_in_executor

if TYPE_CHECKING:
    from langchain_core.prompt_values import PromptValue

T = TypeVar("T")
OutputParserLike = Runnable[LanguageModelOutput, T]


[docs] class BaseLLMOutputParser(Generic[T], ABC): """Abstract base class for parsing the outputs of a model."""
[docs] @abstractmethod def parse_result(self, result: list[Generation], *, partial: bool = False) -> T: """Parse a list of candidate model Generations into a specific format. Args: result: A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. partial: Whether to parse the output as a partial result. This is useful for parsers that can parse partial results. Default is False. Returns: Structured output. """
[docs] async def aparse_result( self, result: list[Generation], *, partial: bool = False ) -> T: """Async parse a list of candidate model Generations into a specific format. Args: result: A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. partial: Whether to parse the output as a partial result. This is useful for parsers that can parse partial results. Default is False. Returns: Structured output. """ return await run_in_executor(None, self.parse_result, result)
[docs] class BaseGenerationOutputParser( BaseLLMOutputParser, RunnableSerializable[LanguageModelOutput, T] ): """Base class to parse the output of an LLM call.""" @property @override def InputType(self) -> Any: """Return the input type for the parser.""" return Union[str, AnyMessage] @property @override def OutputType(self) -> type[T]: """Return the output type for the parser.""" # even though mypy complains this isn't valid, # it is good enough for pydantic to build the schema from return T # type: ignore[misc]
[docs] def invoke( self, input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> T: if isinstance(input, BaseMessage): return self._call_with_config( lambda inner_input: self.parse_result( [ChatGeneration(message=inner_input)] ), input, config, run_type="parser", ) else: return self._call_with_config( lambda inner_input: self.parse_result([Generation(text=inner_input)]), input, config, run_type="parser", )
[docs] async def ainvoke( self, input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> T: if isinstance(input, BaseMessage): return await self._acall_with_config( lambda inner_input: self.aparse_result( [ChatGeneration(message=inner_input)] ), input, config, run_type="parser", ) else: return await self._acall_with_config( lambda inner_input: self.aparse_result([Generation(text=inner_input)]), input, config, run_type="parser", )
[docs] class BaseOutputParser( BaseLLMOutputParser, RunnableSerializable[LanguageModelOutput, T] ): """Base class to parse the output of an LLM call. Output parsers help structure language model responses. Example: .. code-block:: python class BooleanOutputParser(BaseOutputParser[bool]): true_val: str = "YES" false_val: str = "NO" def parse(self, text: str) -> bool: cleaned_text = text.strip().upper() if cleaned_text not in (self.true_val.upper(), self.false_val.upper()): raise OutputParserException( f"BooleanOutputParser expected output value to either be " f"{self.true_val} or {self.false_val} (case-insensitive). " f"Received {cleaned_text}." ) return cleaned_text == self.true_val.upper() @property def _type(self) -> str: return "boolean_output_parser" """ # noqa: E501 @property @override def InputType(self) -> Any: """Return the input type for the parser.""" return Union[str, AnyMessage] @property @override def OutputType(self) -> type[T]: """Return the output type for the parser. This property is inferred from the first type argument of the class. Raises: TypeError: If the class doesn't have an inferable OutputType. """ for base in self.__class__.mro(): if hasattr(base, "__pydantic_generic_metadata__"): metadata = base.__pydantic_generic_metadata__ if "args" in metadata and len(metadata["args"]) > 0: return metadata["args"][0] msg = ( f"Runnable {self.__class__.__name__} doesn't have an inferable OutputType. " "Override the OutputType property to specify the output type." ) raise TypeError(msg)
[docs] def invoke( self, input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> T: if isinstance(input, BaseMessage): return self._call_with_config( lambda inner_input: self.parse_result( [ChatGeneration(message=inner_input)] ), input, config, run_type="parser", ) else: return self._call_with_config( lambda inner_input: self.parse_result([Generation(text=inner_input)]), input, config, run_type="parser", )
[docs] async def ainvoke( self, input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> T: if isinstance(input, BaseMessage): return await self._acall_with_config( lambda inner_input: self.aparse_result( [ChatGeneration(message=inner_input)] ), input, config, run_type="parser", ) else: return await self._acall_with_config( lambda inner_input: self.aparse_result([Generation(text=inner_input)]), input, config, run_type="parser", )
[docs] def parse_result(self, result: list[Generation], *, partial: bool = False) -> T: """Parse a list of candidate model Generations into a specific format. The return value is parsed from only the first Generation in the result, which is assumed to be the highest-likelihood Generation. Args: result: A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. partial: Whether to parse the output as a partial result. This is useful for parsers that can parse partial results. Default is False. Returns: Structured output. """ return self.parse(result[0].text)
[docs] @abstractmethod def parse(self, text: str) -> T: """Parse a single string model output into some structure. Args: text: String output of a language model. Returns: Structured output. """
[docs] async def aparse_result( self, result: list[Generation], *, partial: bool = False ) -> T: """Async parse a list of candidate model Generations into a specific format. The return value is parsed from only the first Generation in the result, which is assumed to be the highest-likelihood Generation. Args: result: A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. partial: Whether to parse the output as a partial result. This is useful for parsers that can parse partial results. Default is False. Returns: Structured output. """ return await run_in_executor(None, self.parse_result, result, partial=partial)
[docs] async def aparse(self, text: str) -> T: """Async parse a single string model output into some structure. Args: text: String output of a language model. Returns: Structured output. """ return await run_in_executor(None, self.parse, text)
# TODO: rename 'completion' -> 'text'.
[docs] def parse_with_prompt(self, completion: str, prompt: PromptValue) -> Any: """Parse the output of an LLM call with the input prompt for context. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Args: completion: String output of a language model. prompt: Input PromptValue. Returns: Structured output. """ return self.parse(completion)
[docs] def get_format_instructions(self) -> str: """Instructions on how the LLM output should be formatted.""" raise NotImplementedError
@property def _type(self) -> str: """Return the output parser type for serialization.""" msg = ( f"_type property is not implemented in class {self.__class__.__name__}." " This is required for serialization." ) raise NotImplementedError(msg) def dict(self, **kwargs: Any) -> dict: """Return dictionary representation of output parser.""" output_parser_dict = super().dict(**kwargs) with contextlib.suppress(NotImplementedError): output_parser_dict["_type"] = self._type return output_parser_dict