langchain_core.tools.convert ηš„ζΊδ»£η 

import inspect
from typing import Any, Callable, Literal, Optional, Union, get_type_hints, overload

from pydantic import BaseModel, Field, create_model

from langchain_core.callbacks import Callbacks
from langchain_core.runnables import Runnable
from langchain_core.tools.base import BaseTool
from langchain_core.tools.simple import Tool
from langchain_core.tools.structured import StructuredTool


@overload
def tool(
    *,
    return_direct: bool = False,
    args_schema: Optional[type] = None,
    infer_schema: bool = True,
    response_format: Literal["content", "content_and_artifact"] = "content",
    parse_docstring: bool = False,
    error_on_invalid_docstring: bool = True,
) -> Callable[[Union[Callable, Runnable]], BaseTool]: ...


@overload
def tool(
    name_or_callable: str,
    runnable: Runnable,
    *,
    return_direct: bool = False,
    args_schema: Optional[type] = None,
    infer_schema: bool = True,
    response_format: Literal["content", "content_and_artifact"] = "content",
    parse_docstring: bool = False,
    error_on_invalid_docstring: bool = True,
) -> BaseTool: ...


@overload
def tool(
    name_or_callable: Callable,
    *,
    return_direct: bool = False,
    args_schema: Optional[type] = None,
    infer_schema: bool = True,
    response_format: Literal["content", "content_and_artifact"] = "content",
    parse_docstring: bool = False,
    error_on_invalid_docstring: bool = True,
) -> BaseTool: ...


@overload
def tool(
    name_or_callable: str,
    *,
    return_direct: bool = False,
    args_schema: Optional[type] = None,
    infer_schema: bool = True,
    response_format: Literal["content", "content_and_artifact"] = "content",
    parse_docstring: bool = False,
    error_on_invalid_docstring: bool = True,
) -> Callable[[Union[Callable, Runnable]], BaseTool]: ...


[docs] def tool( name_or_callable: Optional[Union[str, Callable]] = None, runnable: Optional[Runnable] = None, *args: Any, return_direct: bool = False, args_schema: Optional[type] = None, infer_schema: bool = True, response_format: Literal["content", "content_and_artifact"] = "content", parse_docstring: bool = False, error_on_invalid_docstring: bool = True, ) -> Union[ BaseTool, Callable[[Union[Callable, Runnable]], BaseTool], ]: """Make tools out of functions, can be used with or without arguments. Args: name_or_callable: Optional name of the tool or the callable to be converted to a tool. Must be provided as a positional argument. runnable: Optional runnable to convert to a tool. Must be provided as a positional argument. return_direct: Whether to return directly from the tool rather than continuing the agent loop. Defaults to False. args_schema: optional argument schema for user to specify. Defaults to None. infer_schema: Whether to infer the schema of the arguments from the function's signature. This also makes the resultant tool accept a dictionary input to its `run()` function. Defaults to True. response_format: The tool response format. If "content" then the output of the tool is interpreted as the contents of a ToolMessage. If "content_and_artifact" then the output is expected to be a two-tuple corresponding to the (content, artifact) of a ToolMessage. Defaults to "content". parse_docstring: if ``infer_schema`` and ``parse_docstring``, will attempt to parse parameter descriptions from Google Style function docstrings. Defaults to False. error_on_invalid_docstring: if ``parse_docstring`` is provided, configure whether to raise ValueError on invalid Google Style docstrings. Defaults to True. Returns: The tool. Requires: - Function must be of type (str) -> str - Function must have a docstring Examples: .. code-block:: python @tool def search_api(query: str) -> str: # Searches the API for the query. return @tool("search", return_direct=True) def search_api(query: str) -> str: # Searches the API for the query. return @tool(response_format="content_and_artifact") def search_api(query: str) -> Tuple[str, dict]: return "partial json of results", {"full": "object of results"} .. versionadded:: 0.2.14 Parse Google-style docstrings: .. code-block:: python @tool(parse_docstring=True) def foo(bar: str, baz: int) -> str: \"\"\"The foo. Args: bar: The bar. baz: The baz. \"\"\" return bar foo.args_schema.model_json_schema() .. code-block:: python { "title": "foo", "description": "The foo.", "type": "object", "properties": { "bar": { "title": "Bar", "description": "The bar.", "type": "string" }, "baz": { "title": "Baz", "description": "The baz.", "type": "integer" } }, "required": [ "bar", "baz" ] } Note that parsing by default will raise ``ValueError`` if the docstring is considered invalid. A docstring is considered invalid if it contains arguments not in the function signature, or is unable to be parsed into a summary and "Args:" blocks. Examples below: .. code-block:: python # No args section def invalid_docstring_1(bar: str, baz: int) -> str: \"\"\"The foo.\"\"\" return bar # Improper whitespace between summary and args section def invalid_docstring_2(bar: str, baz: int) -> str: \"\"\"The foo. Args: bar: The bar. baz: The baz. \"\"\" return bar # Documented args absent from function signature def invalid_docstring_3(bar: str, baz: int) -> str: \"\"\"The foo. Args: banana: The bar. monkey: The baz. \"\"\" return bar """ def _create_tool_factory( tool_name: str, ) -> Callable[[Union[Callable, Runnable]], BaseTool]: """Create a decorator that takes a callable and returns a tool. Args: tool_name: The name that will be assigned to the tool. Returns: A function that takes a callable or Runnable and returns a tool. """ def _tool_factory(dec_func: Union[Callable, Runnable]) -> BaseTool: if isinstance(dec_func, Runnable): runnable = dec_func if runnable.input_schema.model_json_schema().get("type") != "object": msg = "Runnable must have an object schema." raise ValueError(msg) async def ainvoke_wrapper( callbacks: Optional[Callbacks] = None, **kwargs: Any ) -> Any: return await runnable.ainvoke(kwargs, {"callbacks": callbacks}) def invoke_wrapper( callbacks: Optional[Callbacks] = None, **kwargs: Any ) -> Any: return runnable.invoke(kwargs, {"callbacks": callbacks}) coroutine = ainvoke_wrapper func = invoke_wrapper schema: Optional[type[BaseModel]] = runnable.input_schema description = repr(runnable) elif inspect.iscoroutinefunction(dec_func): coroutine = dec_func func = None schema = args_schema description = None else: coroutine = None func = dec_func schema = args_schema description = None if infer_schema or args_schema is not None: return StructuredTool.from_function( func, coroutine, name=tool_name, description=description, return_direct=return_direct, args_schema=schema, infer_schema=infer_schema, response_format=response_format, parse_docstring=parse_docstring, error_on_invalid_docstring=error_on_invalid_docstring, ) # If someone doesn't want a schema applied, we must treat it as # a simple string->string function if dec_func.__doc__ is None: msg = ( "Function must have a docstring if " "description not provided and infer_schema is False." ) raise ValueError(msg) return Tool( name=tool_name, func=func, description=f"{tool_name} tool", return_direct=return_direct, coroutine=coroutine, response_format=response_format, ) return _tool_factory if len(args) != 0: # Triggered if a user attempts to use positional arguments that # do not exist in the function signature # e.g., @tool("name", runnable, "extra_arg") # Here, "extra_arg" is not a valid argument msg = "Too many arguments for tool decorator. A decorator " raise ValueError(msg) if runnable is not None: # tool is used as a function # tool_from_runnable = tool("name", runnable) if not name_or_callable: msg = "Runnable without name for tool constructor" raise ValueError(msg) if not isinstance(name_or_callable, str): msg = "Name must be a string for tool constructor" raise ValueError(msg) return _create_tool_factory(name_or_callable)(runnable) elif name_or_callable is not None: if callable(name_or_callable) and hasattr(name_or_callable, "__name__"): # Used as a decorator without parameters # @tool # def my_tool(): # pass return _create_tool_factory(name_or_callable.__name__)(name_or_callable) elif isinstance(name_or_callable, str): # Used with a new name for the tool # @tool("search") # def my_tool(): # pass # # or # # @tool("search", parse_docstring=True) # def my_tool(): # pass return _create_tool_factory(name_or_callable) else: msg = ( f"The first argument must be a string or a callable with a __name__ " f"for tool decorator. Got {type(name_or_callable)}" ) raise ValueError(msg) else: # Tool is used as a decorator with parameters specified # @tool(parse_docstring=True) # def my_tool(): # pass def _partial(func: Union[Callable, Runnable]) -> BaseTool: """Partial function that takes a callable and returns a tool.""" name_ = func.get_name() if isinstance(func, Runnable) else func.__name__ tool_factory = _create_tool_factory(name_) return tool_factory(func) return _partial
def _get_description_from_runnable(runnable: Runnable) -> str: """Generate a placeholder description of a runnable.""" input_schema = runnable.input_schema.model_json_schema() return f"Takes {input_schema}." def _get_schema_from_runnable_and_arg_types( runnable: Runnable, name: str, arg_types: Optional[dict[str, type]] = None, ) -> type[BaseModel]: """Infer args_schema for tool.""" if arg_types is None: try: arg_types = get_type_hints(runnable.InputType) except TypeError as e: msg = ( "Tool input must be str or dict. If dict, dict arguments must be " "typed. Either annotate types (e.g., with TypedDict) or pass " f"arg_types into `.as_tool` to specify. {str(e)}" ) raise TypeError(msg) from e fields = {key: (key_type, Field(...)) for key, key_type in arg_types.items()} return create_model(name, **fields) # type: ignore
[docs] def convert_runnable_to_tool( runnable: Runnable, args_schema: Optional[type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[dict[str, type]] = None, ) -> BaseTool: """Convert a Runnable into a BaseTool. Args: runnable: The runnable to convert. args_schema: The schema for the tool's input arguments. Defaults to None. name: The name of the tool. Defaults to None. description: The description of the tool. Defaults to None. arg_types: The types of the arguments. Defaults to None. Returns: The tool. """ if args_schema: runnable = runnable.with_types(input_type=args_schema) description = description or _get_description_from_runnable(runnable) name = name or runnable.get_name() schema = runnable.input_schema.model_json_schema() if schema.get("type") == "string": return Tool( name=name, func=runnable.invoke, coroutine=runnable.ainvoke, description=description, ) else: async def ainvoke_wrapper( callbacks: Optional[Callbacks] = None, **kwargs: Any ) -> Any: return await runnable.ainvoke(kwargs, config={"callbacks": callbacks}) def invoke_wrapper(callbacks: Optional[Callbacks] = None, **kwargs: Any) -> Any: return runnable.invoke(kwargs, config={"callbacks": callbacks}) if ( arg_types is None and schema.get("type") == "object" and schema.get("properties") ): args_schema = runnable.input_schema else: args_schema = _get_schema_from_runnable_and_arg_types( runnable, name, arg_types=arg_types ) return StructuredTool.from_function( name=name, func=invoke_wrapper, coroutine=ainvoke_wrapper, description=description, args_schema=args_schema, )