langchain_experimental.plan_and_execute.executors.base ηš„ζΊδ»£η 

from abc import abstractmethod
from typing import Any

from langchain.chains.base import Chain
from langchain_core.callbacks.manager import Callbacks
from pydantic import BaseModel

from langchain_experimental.plan_and_execute.schema import StepResponse


[docs] class BaseExecutor(BaseModel): """Base executor."""
[docs] @abstractmethod def step( self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any ) -> StepResponse: """Take step."""
[docs] @abstractmethod async def astep( self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any ) -> StepResponse: """Take async step."""
[docs] class ChainExecutor(BaseExecutor): """Chain executor.""" chain: Chain """The chain to use."""
[docs] def step( self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any ) -> StepResponse: """Take step.""" response = self.chain.run(**inputs, callbacks=callbacks) return StepResponse(response=response)
[docs] async def astep( self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any ) -> StepResponse: """Take step.""" response = await self.chain.arun(**inputs, callbacks=callbacks) return StepResponse(response=response)