如何构建用于查询分析的过滤器
我们可能希望进行查询分析,以提取过滤器以传递给检索器。我们要求 LLM 代表这些过滤器的一种方式是作为 Pydantic 模型。然后就涉及将该 Pydantic 模型转换为可传递给检索器的过滤器的问题。
这可以通过手动完成,但 LangChain 还提供了一些“转换器”,能够将通用语法转换为每个检索器特定的过滤器。在这里,我们将介绍如何使用这些转换器。
from typing import Optional
from langchain.chains.query_constructor.ir import (
Comparator,
Comparison,
Operation,
Operator,
StructuredQuery,
)
from langchain.retrievers.self_query.chroma import ChromaTranslator
from langchain.retrievers.self_query.elasticsearch import ElasticsearchTranslator
from langchain_core.pydantic_v1 import BaseModel
在这个例子中,year
和 author
都是要进行过滤的属性。
class Search(BaseModel):
query: str
start_year: Optional[int]
author: Optional[str]
search_query = Search(query="RAG", start_year=2022, author="LangChain")
def construct_comparisons(query: Search):
comparisons = []
if query.start_year is not None:
comparisons.append(
Comparison(
comparator=Comparator.GT,
attribute="start_year",
value=query.start_year,
)
)
if query.author is not None:
comparisons.append(
Comparison(
comparator=Comparator.EQ,
attribute="author",
value=query.author,
)
)
return comparisons
comparisons = construct_comparisons(search_query)
_filter = Operation(operator=Operator.AND, arguments=comparisons)
ElasticsearchTranslator().visit_operation(_filter)
{'bool': {'must': [{'range': {'metadata.start_year': {'gt': 2022}}},
{'term': {'metadata.author.keyword': 'LangChain'}}]}}
ChromaTranslator().visit_operation(_filter)
{'$and': [{'start_year': {'$gt': 2022}}, {'author': {'$eq': 'LangChain'}}]}