TextGen
GitHub:oobabooga/text-generation-webui 是一个 Gradio 网页用户界面,用于运行大型语言模型,如 LLaMA、llama.cpp、GPT-J、Pythia、OPT 和 GALACTICA。
这个示例介绍了如何使用 LangChain 与 LLM 模型进行交互,通过 text-generation-webui
的 API 集成。
请确保已经配置好 text-generation-webui
并安装了 LLM。建议通过适用于您操作系统的 一键安装程序 进行安装。
一旦安装并通过网页界面确认 text-generation-webui
正常工作,请通过网页模型配置选项启用 api
选项,或者在启动命令中添加运行时参数 --api
。
设置 model_url 并运行示例
model_url = "http://localhost:5000"
from langchain.chains import LLMChain
from langchain.globals import set_debug
from langchain_community.llms import TextGen
from langchain_core.prompts import PromptTemplate
set_debug(True)
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)
llm = TextGen(model_url=model_url)
llm_chain = LLMChain(prompt=prompt, llm=llm)
question = "What NFL team won the Super Bowl in the year Justin Bieber was born?"
llm_chain.run(question)
流式版本
您应该安装 websocket-client 以使用此功能。
pip install websocket-client
model_url = "ws://localhost:5005"
from langchain.chains import LLMChain
from langchain.globals import set_debug
from langchain_community.llms import TextGen
from langchain_core.callbacks import StreamingStdOutCallbackHandler
from langchain_core.prompts import PromptTemplate
set_debug(True)
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)
llm = TextGen(
model_url=model_url, streaming=True, callbacks=[StreamingStdOutCallbackHandler()]
)
llm_chain = LLMChain(prompt=prompt, llm=llm)
question = "What NFL team won the Super Bowl in the year Justin Bieber was born?"
llm_chain.run(question)
llm = TextGen(model_url=model_url, streaming=True)
for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'", stop=["'", "\n"]):
print(chunk, end="", flush=True)