Skip to main content

Cohere

Cohere 是一家加拿大初创公司,提供自然语言处理模型,帮助公司改善人机交互。

安装和设置

  • 安装 Python SDK:
pip install langchain-cohere

获取Cohere API密钥,并将其设置为环境变量 (COHERE_API_KEY)

Cohere langchain 集成

API描述端点文档导入示例用法
Chat构建聊天机器人chatfrom langchain_cohere import ChatCoherecohere.ipynb
LLM生成文本generatefrom langchain_cohere.llms import Coherecohere.ipynb
RAG Retriever连接到外部数据源chat + ragfrom langchain.retrievers import CohereRagRetrievercohere.ipynb
Text Embedding将字符串嵌入向量中embedfrom langchain_cohere import CohereEmbeddingscohere.ipynb
Rerank Retriever根据相关性对字符串进行排名rerankfrom langchain.retrievers.document_compressors import CohereRerankcohere.ipynb

快速复制示例

Chat

from langchain_cohere import ChatCohere
from langchain_core.messages import HumanMessage
chat = ChatCohere()
messages = [HumanMessage(content="knock knock")]
print(chat.invoke(messages))

使用Cohere chat 模型

LLM

from langchain_cohere.llms import Cohere
llm = Cohere()
print(llm.invoke("Come up with a pet name"))

使用Cohere(旧版)LLM 模型

ReAct Agent

from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_cohere import ChatCohere, create_cohere_react_agent
from langchain_core.prompts import ChatPromptTemplate
from langchain.agents import AgentExecutor
llm = ChatCohere()
internet_search = TavilySearchResults(max_results=4)
internet_search.name = "internet_search"
internet_search.description = "将用户查询路由到互联网"
prompt = ChatPromptTemplate.from_template("{input}")
agent = create_cohere_react_agent(
llm,
[internet_search],
prompt
)
agent_executor = AgentExecutor(agent=agent, tools=[internet_search], verbose=True)
agent_executor.invoke({
"input": "In what year was the company that was founded as Sound of Music added to the S&P 500?",
})

RAG Retriever

from langchain_cohere import ChatCohere
from langchain.retrievers import CohereRagRetriever
from langchain_core.documents import Document
rag = CohereRagRetriever(llm=ChatCohere())
print(rag.invoke("What is cohere ai?"))

使用Cohere RAG Retriever

Text Embedding

from langchain_cohere import CohereEmbeddings
embeddings = CohereEmbeddings(model="embed-english-light-v3.0")
print(embeddings.embed_documents(["This is a test document."]))

使用Cohere Text Embeddings 模型

Reranker

使用Cohere Reranker


Was this page helpful?


You can leave detailed feedback on GitHub.