Cohere
Cohere 是一家加拿大初创公司,提供自然语言处理模型,帮助公司改善人机交互。
安装和设置
- 安装 Python SDK:
pip install langchain-cohere
获取Cohere API密钥,并将其设置为环境变量 (COHERE_API_KEY
)
Cohere langchain 集成
API | 描述 | 端点文档 | 导入 | 示例用法 |
---|---|---|---|---|
Chat | 构建聊天机器人 | chat | from langchain_cohere import ChatCohere | cohere.ipynb |
LLM | 生成文本 | generate | from langchain_cohere.llms import Cohere | cohere.ipynb |
RAG Retriever | 连接到外部数据源 | chat + rag | from langchain.retrievers import CohereRagRetriever | cohere.ipynb |
Text Embedding | 将字符串嵌入向量中 | embed | from langchain_cohere import CohereEmbeddings | cohere.ipynb |
Rerank Retriever | 根据相关性对字符串进行排名 | rerank | from langchain.retrievers.document_compressors import CohereRerank | cohere.ipynb |
快速复制示例
Chat
from langchain_cohere import ChatCohere
from langchain_core.messages import HumanMessage
chat = ChatCohere()
messages = [HumanMessage(content="knock knock")]
print(chat.invoke(messages))
使用Cohere chat 模型
LLM
from langchain_cohere.llms import Cohere
llm = Cohere()
print(llm.invoke("Come up with a pet name"))
使用Cohere(旧版)LLM 模型
ReAct Agent
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_cohere import ChatCohere, create_cohere_react_agent
from langchain_core.prompts import ChatPromptTemplate
from langchain.agents import AgentExecutor
llm = ChatCohere()
internet_search = TavilySearchResults(max_results=4)
internet_search.name = "internet_search"
internet_search.description = "将用户查询路由到互联网"
prompt = ChatPromptTemplate.from_template("{input}")
agent = create_cohere_react_agent(
llm,
[internet_search],
prompt
)
agent_executor = AgentExecutor(agent=agent, tools=[internet_search], verbose=True)
agent_executor.invoke({
"input": "In what year was the company that was founded as Sound of Music added to the S&P 500?",
})
RAG Retriever
from langchain_cohere import ChatCohere
from langchain.retrievers import CohereRagRetriever
from langchain_core.documents import Document
rag = CohereRagRetriever(llm=ChatCohere())
print(rag.invoke("What is cohere ai?"))
使用Cohere RAG Retriever
Text Embedding
from langchain_cohere import CohereEmbeddings
embeddings = CohereEmbeddings(model="embed-english-light-v3.0")
print(embeddings.embed_documents(["This is a test document."]))
使用Cohere Text Embeddings 模型
Reranker
使用Cohere Reranker