Log10
本页面介绍如何在 LangChain 中使用 Log10。
什么是 Log10?
Log10 是一个开源的无代理 LLM 数据管理和应用开发平台,可以让您记录、调试和标记您的 Langchain 调用。
快速开始
在 log10.io 创建免费帐户。
从“设置”和“组织”选项卡分别添加您的
LOG10_TOKEN
和LOG10_ORG_ID
作为环境变量。还需将
LOG10_URL=https://log10.io
和您通常的 LLM API 密钥(例如OPENAI_API_KEY
或ANTHROPIC_API_KEY
)添加到您的环境中。
如何启用 Langchain 的 Log10 数据管理
与 log10 的集成是一个简单的一行代码 log10_callback
集成,如下所示:
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
from log10.langchain import Log10Callback
from log10.llm import Log10Config
log10_callback = Log10Callback(log10_config=Log10Config())
messages = [
HumanMessage(content="You are a ping pong machine"),
HumanMessage(content="Ping?"),
]
llm = ChatOpenAI(model="gpt-3.5-turbo", callbacks=[log10_callback])
更多详情 + 截图,包括自行托管日志的说明。
如何在 Log10 中使用标记
from langchain_openai import OpenAI
from langchain_community.chat_models import ChatAnthropic
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
from log10.langchain import Log10Callback
from log10.llm import Log10Config
log10_callback = Log10Callback(log10_config=Log10Config())
messages = [
HumanMessage(content="You are a ping pong machine"),
HumanMessage(content="Ping?"),
]
llm = ChatOpenAI(model="gpt-3.5-turbo", callbacks=[log10_callback], temperature=0.5, tags=["test"])
completion = llm.predict_messages(messages, tags=["foobar"])
print(completion)
llm = ChatAnthropic(model="claude-2", callbacks=[log10_callback], temperature=0.7, tags=["baz"])
llm.predict_messages(messages)
print(completion)
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", callbacks=[log10_callback], temperature=0.5)
completion = llm.predict("You are a ping pong machine.\nPing?\n")
print(completion)
您还可以混合直接的 OpenAI 调用和 Langchain LLM 调用:
import os
from log10.load import log10, log10_session
import openai
from langchain_openai import OpenAI
log10(openai)
with log10_session(tags=["foo", "bar"]):
# 记录直接的 OpenAI 调用
response = openai.Completion.create(
model="text-ada-001",
prompt="Where is the Eiffel Tower?",
temperature=0,
max_tokens=1024,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
print(response)
# 通过 Langchain 记录调用
llm = OpenAI(model_name="text-ada-001", temperature=0.5)
response = llm.predict("You are a ping pong machine.\nPing?\n")
print(response)