Intel® Extension for Transformers 量化文本嵌入
加载由 Intel® Extension for Transformers (ITREX) 生成的量化 BGE 嵌入模型,并使用 ITREX 神经引擎,这是一个高性能的 NLP 后端,以加速模型的推断,同时不影响准确性。
更多详情请参阅我们的博客使用 Intel Extension for Transformers 实现高效的自然语言嵌入模型以及BGE 优化示例。
from langchain_community.embeddings import QuantizedBgeEmbeddings
model_name = "Intel/bge-small-en-v1.5-sts-int8-static-inc"
encode_kwargs = {"normalize_embeddings": True} # 设置为 True 以计算余弦相似度
model = QuantizedBgeEmbeddings(
model_name=model_name,
encode_kwargs=encode_kwargs,
query_instruction="Represent this sentence for searching relevant passages: ",
)
/home/yuwenzho/.conda/envs/bge/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm
2024-03-04 10:17:17 [INFO] 开始提取 onnx 模型操作...
2024-03-04 10:17:17 [INFO] 提取 onnxruntime 模型完成...
2024-03-04 10:17:17 [INFO] 开始实现子图匹配和替换...
2024-03-04 10:17:18 [INFO] 子图匹配和替换完成...
用法
text = "这是一个测试文档。"
query_result = model.embed_query(text)
doc_result = model.embed_documents([text])