langchain_experimental.generative_agents.memory
.GenerativeAgentMemory¶
- class langchain_experimental.generative_agents.memory.GenerativeAgentMemory[source]¶
Bases:
BaseMemory
生成代理的内存。
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- param add_memory_key: str = 'add_memory'¶
- param aggregate_importance: float = 0.0¶
跟踪最近记忆的“重要性”总和。
当达到反思阈值时触发反思。
- param current_plan: List[str] = []¶
代理的当前计划。
- param importance_weight: float = 0.15¶
分配给内存重要性的权重有多大。
- param llm: langchain_core.language_models.base.BaseLanguageModel [Required]¶
核心语言模型。
- param max_tokens_limit: int = 1200¶
- param memory_retriever: langchain.retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever [Required]¶
获取相关记忆的检索器。
- param most_recent_memories_key: str = 'most_recent_memories'¶
- param most_recent_memories_token_key: str = 'recent_memories_token'¶
- param now_key: str = 'now'¶
- param queries_key: str = 'queries'¶
- param reflecting: bool = False¶
- param reflection_threshold: Optional[float] = None¶
当聚合重要性超过反思阈值时,停止反思。
- param relevant_memories_key: str = 'relevant_memories'¶
- param relevant_memories_simple_key: str = 'relevant_memories_simple'¶
- param verbose: bool = False¶
- async aclear() None ¶
清除内存内容。
- Return type
None
- add_memories(memory_content: str, now: Optional[datetime] = None) List[str] [source]¶
向代理的记忆中添加观察或记忆。
- Parameters
memory_content (str) –
now (Optional[datetime]) –
- Return type
List[str]
- add_memory(memory_content: str, now: Optional[datetime] = None) List[str] [source]¶
将一个观察或记忆添加到agent的记忆中。
- Parameters
memory_content (str) –
now (Optional[datetime]) –
- Return type
List[str]
- async aload_memory_variables(inputs: Dict[str, Any]) Dict[str, Any] ¶
给定文本输入,返回键值对。
- Parameters
inputs (Dict[str, Any]) –
- Return type
Dict[str, Any]
- async asave_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None ¶
将此链式运行的上下文保存到内存中。
- Parameters
inputs (Dict[str, Any]) –
outputs (Dict[str, str]) –
- Return type
None
- chain(prompt: PromptTemplate) LLMChain [source]¶
- Parameters
prompt (PromptTemplate) –
- Return type
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model ¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- Parameters
_fields_set (Optional[SetStr]) –
values (Any) –
- Return type
Model
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model ¶
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep (bool) – set to True to make a deep copy of the model
self (Model) –
- Returns
new model instance
- Return type
Model
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny ¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
- Return type
DictStrAny
- fetch_memories(observation: str, now: Optional[datetime] = None) List[Document] [source]¶
获取相关的记忆。
- Parameters
observation (str) –
now (Optional[datetime]) –
- Return type
List[Document]
- format_memories_detail(relevant_memories: List[Document]) str [source]¶
- Parameters
relevant_memories (List[Document]) –
- Return type
str
- format_memories_simple(relevant_memories: List[Document]) str [source]¶
- Parameters
relevant_memories (List[Document]) –
- Return type
str
- classmethod from_orm(obj: Any) Model ¶
- Parameters
obj (Any) –
- Return type
Model
- classmethod get_lc_namespace() List[str] ¶
获取langchain对象的命名空间。
例如,如果类是`langchain.llms.openai.OpenAI`,那么命名空间是[“langchain”, “llms”, “openai”]
- Return type
List[str]
- classmethod is_lc_serializable() bool ¶
这个类是否可序列化?
- Return type
bool
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode ¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- Parameters
include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) –
by_alias (bool) –
skip_defaults (Optional[bool]) –
exclude_unset (bool) –
exclude_defaults (bool) –
exclude_none (bool) –
encoder (Optional[Callable[[Any], Any]]) –
models_as_dict (bool) –
dumps_kwargs (Any) –
- Return type
unicode
- classmethod lc_id() List[str] ¶
用于序列化目的的此类的唯一标识符。
唯一标识符是一个描述对象路径的字符串列表。
- Return type
List[str]
- load_memory_variables(inputs: Dict[str, Any]) Dict[str, str] [source]¶
给定文本输入,返回键值对。
- Parameters
inputs (Dict[str, Any]) –
- Return type
Dict[str, str]
- classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- Parameters
path (Union[str, Path]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
- Return type
Model
- classmethod parse_obj(obj: Any) Model ¶
- Parameters
obj (Any) –
- Return type
Model
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) Model ¶
- Parameters
b (Union[str, bytes]) –
content_type (unicode) –
encoding (unicode) –
proto (Protocol) –
allow_pickle (bool) –
- Return type
Model
- pause_to_reflect(now: Optional[datetime] = None) List[str] [source]¶
反思最近的观察并产生“洞察”。
- Parameters
now (Optional[datetime]) –
- Return type
List[str]
- save_context(inputs: Dict[str, Any], outputs: Dict[str, Any]) None [source]¶
将此模型运行的上下文保存到内存中。
- Parameters
inputs (Dict[str, Any]) –
outputs (Dict[str, Any]) –
- Return type
None
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny ¶
- Parameters
by_alias (bool) –
ref_template (unicode) –
- Return type
DictStrAny
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode ¶
- Parameters
by_alias (bool) –
ref_template (unicode) –
dumps_kwargs (Any) –
- Return type
unicode
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
- Return type
- to_json_not_implemented() SerializedNotImplemented ¶
- Return type
- classmethod update_forward_refs(**localns: Any) None ¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- Parameters
localns (Any) –
- Return type
None
- classmethod validate(value: Any) Model ¶
- Parameters
value (Any) –
- Return type
Model
- property lc_attributes: Dict¶
需要包含在序列化kwargs中的属性名称列表。
这些属性必须被构造函数接受。
- property lc_secrets: Dict[str, str]¶
构造函数参数名称到秘钥ID的映射。
- 例如,
{“openai_api_key”: “OPENAI_API_KEY”}
- property memory_variables: List[str]¶
此内存类将动态加载输入密钥。