Skip to content

Anyscale

AnyscaleEmbedding #

Bases: BaseEmbedding

用于嵌入的Anyscale类。

Parameters:

Name Type Description Default
model str

用于嵌入的模型。 默认为"thenlper/gte-large

DEFAULT_MODEL
Source code in llama_index/embeddings/anyscale/base.py
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
class AnyscaleEmbedding(BaseEmbedding):
    """用于嵌入的Anyscale类。

    Args:
        model (str): 用于嵌入的模型。
            默认为"thenlper/gte-large
    """

    additional_kwargs: Dict[str, Any] = Field(
        default_factory=dict, description="Additional kwargs for the OpenAI API."
    )

    api_key: str = Field(description="The Anyscale API key.")
    api_base: str = Field(description="The base URL for Anyscale API.")
    api_version: str = Field(description="The version for OpenAI API.")

    max_retries: int = Field(
        default=10, description="Maximum number of retries.", gte=0
    )
    timeout: float = Field(default=60.0, description="Timeout for each request.", gte=0)
    default_headers: Optional[Dict[str, str]] = Field(
        default=None, description="The default headers for API requests."
    )
    reuse_client: bool = Field(
        default=True,
        description=(
            "Reuse the Anyscale client between requests. When doing anything with large "
            "volumes of async API calls, setting this to false can improve stability."
        ),
    )

    _query_engine: Optional[str] = PrivateAttr()
    _text_engine: Optional[str] = PrivateAttr()
    _client: Optional[OpenAI] = PrivateAttr()
    _aclient: Optional[AsyncOpenAI] = PrivateAttr()
    _http_client: Optional[httpx.Client] = PrivateAttr()

    def __init__(
        self,
        model: str = DEFAULT_MODEL,
        embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE,
        additional_kwargs: Optional[Dict[str, Any]] = None,
        api_key: Optional[str] = None,
        api_base: Optional[str] = DEFAULT_API_BASE,
        api_version: Optional[str] = None,
        max_retries: int = 10,
        timeout: float = 60.0,
        reuse_client: bool = True,
        callback_manager: Optional[CallbackManager] = None,
        default_headers: Optional[Dict[str, str]] = None,
        http_client: Optional[httpx.Client] = None,
        **kwargs: Any,
    ) -> None:
        additional_kwargs = additional_kwargs or {}

        api_key, api_base, api_version = resolve_anyscale_credentials(
            api_key=api_key,
            api_base=api_base,
            api_version=api_version,
        )

        if "model_name" in kwargs:
            model_name = kwargs.pop("model_name")
        else:
            model_name = model

        self._query_engine = model_name
        self._text_engine = model_name

        super().__init__(
            embed_batch_size=embed_batch_size,
            callback_manager=callback_manager,
            model_name=model_name,
            additional_kwargs=additional_kwargs,
            api_key=api_key,
            api_base=api_base,
            api_version=api_version,
            max_retries=max_retries,
            reuse_client=reuse_client,
            timeout=timeout,
            default_headers=default_headers,
            **kwargs,
        )

        self._client = None
        self._aclient = None
        self._http_client = http_client

    def _get_client(self) -> OpenAI:
        if not self.reuse_client:
            return OpenAI(**self._get_credential_kwargs())

        if self._client is None:
            self._client = OpenAI(**self._get_credential_kwargs())
        return self._client

    def _get_aclient(self) -> AsyncOpenAI:
        if not self.reuse_client:
            return AsyncOpenAI(**self._get_credential_kwargs())

        if self._aclient is None:
            self._aclient = AsyncOpenAI(**self._get_credential_kwargs())
        return self._aclient

    @classmethod
    def class_name(cls) -> str:
        return "AnyscaleEmbedding"

    def _get_credential_kwargs(self) -> Dict[str, Any]:
        return {
            "api_key": self.api_key,
            "base_url": self.api_base,
            "max_retries": self.max_retries,
            "timeout": self.timeout,
            "default_headers": self.default_headers,
            "http_client": self._http_client,
        }

    def _get_query_embedding(self, query: str) -> List[float]:
        """获取查询嵌入。"""
        client = self._get_client()
        return get_embedding(
            client,
            query,
            engine=self._query_engine,
            **self.additional_kwargs,
        )

    async def _aget_query_embedding(self, query: str) -> List[float]:
        """_get_query_embedding的异步版本。"""
        aclient = self._get_aclient()
        return await aget_embedding(
            aclient,
            query,
            engine=self._query_engine,
            **self.additional_kwargs,
        )

    def _get_text_embedding(self, text: str) -> List[float]:
        """获取文本嵌入。"""
        client = self._get_client()
        return get_embedding(
            client,
            text,
            engine=self._text_engine,
            **self.additional_kwargs,
        )

    async def _aget_text_embedding(self, text: str) -> List[float]:
        """异步获取文本嵌入。"""
        aclient = self._get_aclient()
        return await aget_embedding(
            aclient,
            text,
            engine=self._text_engine,
            **self.additional_kwargs,
        )

    def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        """获取文本嵌入。

默认情况下,这是对_get_text_embedding的包装器。
可以针对批量查询进行重写。
"""
        client = self._get_client()
        return get_embeddings(
            client,
            texts,
            engine=self._text_engine,
            **self.additional_kwargs,
        )

    async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        """异步获取文本嵌入。"""
        aclient = self._get_aclient()
        return await aget_embeddings(
            aclient,
            texts,
            engine=self._text_engine,
            **self.additional_kwargs,
        )