Skip to content

Huggingface openvino

OpenVINOEmbedding #

Bases: BaseEmbedding

Source code in llama_index/embeddings/huggingface_openvino/base.py
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
class OpenVINOEmbedding(BaseEmbedding):
    folder_name: str = Field(description="Folder name to load from.")
    max_length: int = Field(description="Maximum length of input.")
    pooling: str = Field(description="Pooling strategy. One of ['cls', 'mean'].")
    normalize: str = Field(default=True, description="Normalize embeddings or not.")
    query_instruction: Optional[str] = Field(
        description="Instruction to prepend to query text."
    )
    text_instruction: Optional[str] = Field(
        description="Instruction to prepend to text."
    )
    cache_folder: Optional[str] = Field(
        description="Cache folder for huggingface files."
    )

    _model: Any = PrivateAttr()
    _tokenizer: Any = PrivateAttr()
    _device: Any = PrivateAttr()

    def __init__(
        self,
        folder_name: str,
        pooling: str = "cls",
        max_length: Optional[int] = None,
        normalize: bool = True,
        query_instruction: Optional[str] = None,
        text_instruction: Optional[str] = None,
        model: Optional[Any] = None,
        tokenizer: Optional[Any] = None,
        embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE,
        callback_manager: Optional[CallbackManager] = None,
        model_kwargs: Dict[str, Any] = {},
        device: Optional[str] = "auto",
    ):
        self._device = device
        self._model = model or OVModelForFeatureExtraction.from_pretrained(
            folder_name, device=self._device, **model_kwargs
        )
        self._tokenizer = tokenizer or AutoTokenizer.from_pretrained(folder_name)

        if max_length is None:
            try:
                max_length = int(self._model.config.max_position_embeddings)
            except Exception:
                raise ValueError(
                    "Unable to find max_length from model config. "
                    "Please provide max_length."
                )
            try:
                max_length = min(max_length, int(self._tokenizer.model_max_length))
            except Exception as exc:
                print(f"An error occurred while retrieving tokenizer max length: {exc}")

        if pooling not in ["cls", "mean"]:
            raise ValueError(f"Pooling {pooling} not supported.")

        super().__init__(
            embed_batch_size=embed_batch_size,
            callback_manager=callback_manager,
            folder_name=folder_name,
            max_length=max_length,
            pooling=pooling,
            normalize=normalize,
            query_instruction=query_instruction,
            text_instruction=text_instruction,
        )

    @classmethod
    def class_name(cls) -> str:
        return "OpenVINOEmbedding"

    @staticmethod
    def create_and_save_openvino_model(
        model_name_or_path: str,
        output_path: str,
        export_kwargs: Optional[dict] = None,
    ) -> None:
        try:
            from optimum.intel.openvino import OVModelForFeatureExtraction
            from transformers import AutoTokenizer
        except ImportError:
            raise ImportError(
                "OptimumEmbedding requires transformers to be installed.\n"
                "Please install transformers with "
                "`pip install transformers optimum[openvino]`."
            )

        export_kwargs = export_kwargs or {}
        model = OVModelForFeatureExtraction.from_pretrained(
            model_name_or_path, export=True, compile=False, **export_kwargs
        )
        tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)

        model.save_pretrained(output_path)
        tokenizer.save_pretrained(output_path)
        print(
            f"Saved OpenVINO model to {output_path}. Use it with "
            f"`embed_model = OpenVINOEmbedding(folder_name='{output_path}')`."
        )

    def _mean_pooling(self, model_output: Any, attention_mask: Any) -> Any:
        """均值池化 - 考虑注意力掩码以进行正确的平均值计算。"""
        import torch

        # First element of model_output contains all token embeddings
        token_embeddings = model_output[0]
        input_mask_expanded = (
            attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        )
        return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
            input_mask_expanded.sum(1), min=1e-9
        )

    def _cls_pooling(self, model_output: list) -> Any:
        """使用CLS标记作为池化标记。"""
        return model_output[0][:, 0]

    def _embed(self, sentences: List[str]) -> List[List[float]]:
        """嵌入句子。"""
        encoded_input = self._tokenizer(
            sentences,
            padding=True,
            max_length=self.max_length,
            truncation=True,
            return_tensors="pt",
        )

        model_output = self._model(**encoded_input)

        if self.pooling == "cls":
            embeddings = self._cls_pooling(model_output)
        else:
            embeddings = self._mean_pooling(
                model_output, encoded_input["attention_mask"]
            )

        if self.normalize:
            import torch

            embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)

        return embeddings.tolist()

    def _get_query_embedding(self, query: str) -> List[float]:
        """获取查询嵌入。"""
        query = format_query(query, self.model_name, self.query_instruction)
        return self._embed([query])[0]

    async def _aget_query_embedding(self, query: str) -> List[float]:
        """异步获取查询嵌入。"""
        return self._get_query_embedding(query)

    async def _aget_text_embedding(self, text: str) -> List[float]:
        """异步获取文本嵌入。"""
        return self._get_text_embedding(text)

    def _get_text_embedding(self, text: str) -> List[float]:
        """获取文本嵌入。"""
        text = format_text(text, self.model_name, self.text_instruction)
        return self._embed([text])[0]

    def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        """获取文本嵌入。"""
        texts = [
            format_text(text, self.model_name, self.text_instruction) for text in texts
        ]
        return self._embed(texts)