15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140 | class TextEmbeddingsInference(BaseEmbedding):
base_url: str = Field(
default=DEFAULT_URL,
description="Base URL for the text embeddings service.",
)
query_instruction: Optional[str] = Field(
description="Instruction to prepend to query text."
)
text_instruction: Optional[str] = Field(
description="Instruction to prepend to text."
)
timeout: float = Field(
default=60.0,
description="Timeout in seconds for the request.",
)
truncate_text: bool = Field(
default=True,
description="Whether to truncate text or not when generating embeddings.",
)
auth_token: Optional[Union[str, Callable[[str], str]]] = Field(
default=None,
description="Authentication token or authentication token generating function for authenticated requests",
)
def __init__(
self,
model_name: str,
base_url: str = DEFAULT_URL,
text_instruction: Optional[str] = None,
query_instruction: Optional[str] = None,
embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE,
timeout: float = 60.0,
truncate_text: bool = True,
callback_manager: Optional[CallbackManager] = None,
auth_token: Optional[Union[str, Callable[[str], str]]] = None,
):
super().__init__(
base_url=base_url,
model_name=model_name,
text_instruction=text_instruction,
query_instruction=query_instruction,
embed_batch_size=embed_batch_size,
timeout=timeout,
truncate_text=truncate_text,
callback_manager=callback_manager,
auth_token=auth_token,
)
@classmethod
def class_name(cls) -> str:
return "TextEmbeddingsInference"
def _call_api(self, texts: List[str]) -> List[List[float]]:
import httpx
headers = {"Content-Type": "application/json"}
if self.auth_token is not None:
if callable(self.auth_token):
headers["Authorization"] = self.auth_token(self.base_url)
else:
headers["Authorization"] = self.auth_token
json_data = {"inputs": texts, "truncate": self.truncate_text}
with httpx.Client() as client:
response = client.post(
f"{self.base_url}/embed",
headers=headers,
json=json_data,
timeout=self.timeout,
)
return response.json()
async def _acall_api(self, texts: List[str]) -> List[List[float]]:
import httpx
headers = {"Content-Type": "application/json"}
if self.auth_token is not None:
if callable(self.auth_token):
headers["Authorization"] = self.auth_token(self.base_url)
else:
headers["Authorization"] = self.auth_token
json_data = {"inputs": texts, "truncate": self.truncate_text}
async with httpx.AsyncClient() as client:
response = await client.post(
f"{self.base_url}/embed",
headers=headers,
json=json_data,
timeout=self.timeout,
)
return response.json()
def _get_query_embedding(self, query: str) -> List[float]:
"""获取查询嵌入。"""
query = format_query(query, self.model_name, self.query_instruction)
return self._call_api([query])[0]
def _get_text_embedding(self, text: str) -> List[float]:
"""获取文本嵌入。"""
text = format_text(text, self.model_name, self.text_instruction)
return self._call_api([text])[0]
def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
"""获取文本嵌入。"""
texts = [
format_text(text, self.model_name, self.text_instruction) for text in texts
]
return self._call_api(texts)
async def _aget_query_embedding(self, query: str) -> List[float]:
"""异步获取查询嵌入。"""
query = format_query(query, self.model_name, self.query_instruction)
return (await self._acall_api([query]))[0]
async def _aget_text_embedding(self, text: str) -> List[float]:
"""异步获取文本嵌入。"""
text = format_text(text, self.model_name, self.text_instruction)
return (await self._acall_api([text]))[0]
async def _aget_text_embeddings(self, texts: List[str]) -> List[Embedding]:
texts = [
format_text(text, self.model_name, self.text_instruction) for text in texts
]
return await self._acall_api(texts)
|