跳至内容

查询响应

评估模块。

QueryResponseEvaluator module-attribute #

QueryResponseEvaluator = RelevancyEvaluator

相关性评估器 #

基类: BaseEvaluator

相关性评估器。

评估检索到的上下文与查询响应的相关性。 该评估器会考虑查询字符串、检索到的上下文以及响应字符串。

参数:

名称 类型 描述 默认值
raise_error(Optional[bool])

如果响应无效是否引发错误。默认为False。

required
eval_template(Optional[Union[str, BasePromptTemplate]]

用于评估的模板。

required
refine_template(Optional[Union[str, BasePromptTemplate]]

用于优化的模板。

required
Source code in llama-index-core/llama_index/core/evaluation/relevancy.py
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
class RelevancyEvaluator(BaseEvaluator):
    """
    Relenvancy evaluator.

    Evaluates the relevancy of retrieved contexts and response to a query.
    This evaluator considers the query string, retrieved contexts, and response string.

    Args:
        raise_error(Optional[bool]):
            Whether to raise an error if the response is invalid.
            Defaults to False.
        eval_template(Optional[Union[str, BasePromptTemplate]]):
            The template to use for evaluation.
        refine_template(Optional[Union[str, BasePromptTemplate]]):
            The template to use for refinement.

    """

    def __init__(
        self,
        llm: Optional[LLM] = None,
        raise_error: bool = False,
        eval_template: Optional[Union[str, BasePromptTemplate]] = None,
        refine_template: Optional[Union[str, BasePromptTemplate]] = None,
    ) -> None:
        """Init params."""
        self._llm = llm or Settings.llm
        self._raise_error = raise_error

        self._eval_template: BasePromptTemplate
        if isinstance(eval_template, str):
            self._eval_template = PromptTemplate(eval_template)
        else:
            self._eval_template = eval_template or DEFAULT_EVAL_TEMPLATE

        self._refine_template: BasePromptTemplate
        if isinstance(refine_template, str):
            self._refine_template = PromptTemplate(refine_template)
        else:
            self._refine_template = refine_template or DEFAULT_REFINE_TEMPLATE

    def _get_prompts(self) -> PromptDictType:
        """Get prompts."""
        return {
            "eval_template": self._eval_template,
            "refine_template": self._refine_template,
        }

    def _update_prompts(self, prompts: PromptDictType) -> None:
        """Update prompts."""
        if "eval_template" in prompts:
            self._eval_template = prompts["eval_template"]
        if "refine_template" in prompts:
            self._refine_template = prompts["refine_template"]

    async def aevaluate(
        self,
        query: str | None = None,
        response: str | None = None,
        contexts: Sequence[str] | None = None,
        sleep_time_in_seconds: int = 0,
        **kwargs: Any,
    ) -> EvaluationResult:
        """Evaluate whether the contexts and response are relevant to the query."""
        del kwargs  # Unused

        if query is None or contexts is None or response is None:
            raise ValueError("query, contexts, and response must be provided")

        docs = [Document(text=context) for context in contexts]
        index = SummaryIndex.from_documents(docs)

        query_response = f"Question: {query}\nResponse: {response}"

        await asyncio.sleep(sleep_time_in_seconds)

        query_engine = index.as_query_engine(
            llm=self._llm,
            text_qa_template=self._eval_template,
            refine_template=self._refine_template,
        )
        response_obj = await query_engine.aquery(query_response)

        raw_response_txt = str(response_obj)

        if "yes" in raw_response_txt.lower():
            passing = True
        else:
            if self._raise_error:
                raise ValueError("The response is invalid")
            passing = False

        return EvaluationResult(
            query=query,
            response=response,
            passing=passing,
            score=1.0 if passing else 0.0,
            feedback=raw_response_txt,
            contexts=contexts,
        )

aevaluate async #

aevaluate(query: str | None = None, response: str | None = None, contexts: Sequence[str] | None = None, sleep_time_in_seconds: int = 0, **kwargs: Any) -> EvaluationResult

评估上下文和响应是否与查询相关。

Source code in llama-index-core/llama_index/core/evaluation/relevancy.py
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
async def aevaluate(
    self,
    query: str | None = None,
    response: str | None = None,
    contexts: Sequence[str] | None = None,
    sleep_time_in_seconds: int = 0,
    **kwargs: Any,
) -> EvaluationResult:
    """Evaluate whether the contexts and response are relevant to the query."""
    del kwargs  # Unused

    if query is None or contexts is None or response is None:
        raise ValueError("query, contexts, and response must be provided")

    docs = [Document(text=context) for context in contexts]
    index = SummaryIndex.from_documents(docs)

    query_response = f"Question: {query}\nResponse: {response}"

    await asyncio.sleep(sleep_time_in_seconds)

    query_engine = index.as_query_engine(
        llm=self._llm,
        text_qa_template=self._eval_template,
        refine_template=self._refine_template,
    )
    response_obj = await query_engine.aquery(query_response)

    raw_response_txt = str(response_obj)

    if "yes" in raw_response_txt.lower():
        passing = True
    else:
        if self._raise_error:
            raise ValueError("The response is invalid")
        passing = False

    return EvaluationResult(
        query=query,
        response=response,
        passing=passing,
        score=1.0 if passing else 0.0,
        feedback=raw_response_txt,
        contexts=contexts,
    )