Skip to content

Query response

评估模块。

QueryResponseEvaluator module-attribute #

QueryResponseEvaluator = RelevancyEvaluator

RelevancyEvaluator #

Bases: BaseEvaluator

相关性评估器。

评估检索到的上下文和对查询的响应的相关性。 该评估器考虑查询字符串、检索到的上下文和响应字符串。

Parameters:

Name Type Description Default
service_context(Optional[ServiceContext])

用于评估的服务上下文。

required
raise_error(Optional[bool])

如果响应无效是否引发错误。 默认为False。

required
eval_template(Optional[Union[str, BasePromptTemplate]]

用于评估的模板。

required
refine_template(Optional[Union[str, BasePromptTemplate]]

用于细化的模板。

required
Source code in llama_index/core/evaluation/relevancy.py
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
class RelevancyEvaluator(BaseEvaluator):
    """相关性评估器。

    评估检索到的上下文和对查询的响应的相关性。
    该评估器考虑查询字符串、检索到的上下文和响应字符串。

    Args:
        service_context(Optional[ServiceContext]):
            用于评估的服务上下文。
        raise_error(Optional[bool]):
            如果响应无效是否引发错误。
            默认为False。
        eval_template(Optional[Union[str, BasePromptTemplate]]):
            用于评估的模板。
        refine_template(Optional[Union[str, BasePromptTemplate]]):
            用于细化的模板。"""

    def __init__(
        self,
        llm: Optional[LLM] = None,
        raise_error: bool = False,
        eval_template: Optional[Union[str, BasePromptTemplate]] = None,
        refine_template: Optional[Union[str, BasePromptTemplate]] = None,
        # deprecated
        service_context: Optional[ServiceContext] = None,
    ) -> None:
        """初始化参数。"""
        self._llm = llm or llm_from_settings_or_context(Settings, service_context)
        self._raise_error = raise_error

        self._eval_template: BasePromptTemplate
        if isinstance(eval_template, str):
            self._eval_template = PromptTemplate(eval_template)
        else:
            self._eval_template = eval_template or DEFAULT_EVAL_TEMPLATE

        self._refine_template: BasePromptTemplate
        if isinstance(refine_template, str):
            self._refine_template = PromptTemplate(refine_template)
        else:
            self._refine_template = refine_template or DEFAULT_REFINE_TEMPLATE

    def _get_prompts(self) -> PromptDictType:
        """获取提示。"""
        return {
            "eval_template": self._eval_template,
            "refine_template": self._refine_template,
        }

    def _update_prompts(self, prompts: PromptDictType) -> None:
        """更新提示。"""
        if "eval_template" in prompts:
            self._eval_template = prompts["eval_template"]
        if "refine_template" in prompts:
            self._refine_template = prompts["refine_template"]

    async def aevaluate(
        self,
        query: str | None = None,
        response: str | None = None,
        contexts: Sequence[str] | None = None,
        sleep_time_in_seconds: int = 0,
        **kwargs: Any,
    ) -> EvaluationResult:
        """评估上下文和回复是否与查询相关。"""
        del kwargs  # Unused

        if query is None or contexts is None or response is None:
            raise ValueError("query, contexts, and response must be provided")

        docs = [Document(text=context) for context in contexts]
        index = SummaryIndex.from_documents(docs)

        query_response = f"Question: {query}\nResponse: {response}"

        await asyncio.sleep(sleep_time_in_seconds)

        query_engine = index.as_query_engine(
            llm=self._llm,
            text_qa_template=self._eval_template,
            refine_template=self._refine_template,
        )
        response_obj = await query_engine.aquery(query_response)

        raw_response_txt = str(response_obj)

        if "yes" in raw_response_txt.lower():
            passing = True
        else:
            if self._raise_error:
                raise ValueError("The response is invalid")
            passing = False

        return EvaluationResult(
            query=query,
            response=response,
            passing=passing,
            score=1.0 if passing else 0.0,
            feedback=raw_response_txt,
            contexts=contexts,
        )

aevaluate async #

aevaluate(
    query: str | None = None,
    response: str | None = None,
    contexts: Sequence[str] | None = None,
    sleep_time_in_seconds: int = 0,
    **kwargs: Any
) -> EvaluationResult

评估上下文和回复是否与查询相关。

Source code in llama_index/core/evaluation/relevancy.py
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
async def aevaluate(
    self,
    query: str | None = None,
    response: str | None = None,
    contexts: Sequence[str] | None = None,
    sleep_time_in_seconds: int = 0,
    **kwargs: Any,
) -> EvaluationResult:
    """评估上下文和回复是否与查询相关。"""
    del kwargs  # Unused

    if query is None or contexts is None or response is None:
        raise ValueError("query, contexts, and response must be provided")

    docs = [Document(text=context) for context in contexts]
    index = SummaryIndex.from_documents(docs)

    query_response = f"Question: {query}\nResponse: {response}"

    await asyncio.sleep(sleep_time_in_seconds)

    query_engine = index.as_query_engine(
        llm=self._llm,
        text_qa_template=self._eval_template,
        refine_template=self._refine_template,
    )
    response_obj = await query_engine.aquery(query_response)

    raw_response_txt = str(response_obj)

    if "yes" in raw_response_txt.lower():
        passing = True
    else:
        if self._raise_error:
            raise ValueError("The response is invalid")
        passing = False

    return EvaluationResult(
        query=query,
        response=response,
        passing=passing,
        score=1.0 if passing else 0.0,
        feedback=raw_response_txt,
        contexts=contexts,
    )