Skip to content

Cohere

Cohere #

Bases: LLM

Cohere LLM.

例子

pip install llama-index-llms-cohere

from llama_index.llms.cohere import Cohere

llm = Cohere(model="command", api_key=api_key)
resp = llm.complete("Paul Graham is ")
print(resp)
Source code in llama_index/llms/cohere/base.py
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
class Cohere(LLM):
    """Cohere LLM.

    例子:
        `pip install llama-index-llms-cohere`

        ```python
        from llama_index.llms.cohere import Cohere

        llm = Cohere(model="command", api_key=api_key)
        resp = llm.complete("Paul Graham is ")
        print(resp)
        ```"""

    model: str = Field(description="The cohere model to use.")
    temperature: float = Field(
        description="The temperature to use for sampling.", default=None
    )
    max_retries: int = Field(
        default=10, description="The maximum number of API retries."
    )
    additional_kwargs: Dict[str, Any] = Field(
        default_factory=dict, description="Additional kwargs for the Cohere API."
    )
    max_tokens: int = Field(description="The maximum number of tokens to generate.")

    _client: Any = PrivateAttr()
    _aclient: Any = PrivateAttr()

    def __init__(
        self,
        model: str = "command-r",
        temperature: Optional[float] = None,
        max_tokens: Optional[int] = 8192,
        timeout: Optional[float] = None,
        max_retries: int = 10,
        api_key: Optional[str] = None,
        additional_kwargs: Optional[Dict[str, Any]] = None,
        callback_manager: Optional[CallbackManager] = None,
        system_prompt: Optional[str] = None,
        messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
        completion_to_prompt: Optional[Callable[[str], str]] = None,
        pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
        output_parser: Optional[BaseOutputParser] = None,
    ) -> None:
        additional_kwargs = additional_kwargs or {}
        callback_manager = callback_manager or CallbackManager([])

        self._client = cohere.Client(api_key, client_name="llama_index")
        self._aclient = cohere.AsyncClient(api_key, client_name="llama_index")

        super().__init__(
            temperature=temperature,
            additional_kwargs=additional_kwargs,
            timeout=timeout,
            max_retries=max_retries,
            model=model,
            callback_manager=callback_manager,
            max_tokens=max_tokens,
            system_prompt=system_prompt,
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
            pydantic_program_mode=pydantic_program_mode,
            output_parser=output_parser,
        )

    @classmethod
    def class_name(cls) -> str:
        """获取类名。"""
        return "Cohere_LLM"

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(
            context_window=cohere_modelname_to_contextsize(self.model),
            num_output=self.max_tokens,
            is_chat_model=True,
            model_name=self.model,
            system_role=MessageRole.CHATBOT,
        )

    @property
    def _model_kwargs(self) -> Dict[str, Any]:
        base_kwargs = {
            "model": self.model,
            "temperature": self.temperature,
        }
        return {
            **base_kwargs,
            **self.additional_kwargs,
        }

    def _get_all_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
        return {
            **self._model_kwargs,
            **kwargs,
        }

    @llm_chat_callback()
    def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        prompt = messages[-1].content
        remaining, documents = remove_documents_from_messages(messages[:-1])
        history = messages_to_cohere_history(remaining)

        all_kwargs = self._get_all_kwargs(**kwargs)
        if all_kwargs["model"] not in CHAT_MODELS:
            raise ValueError(f"{all_kwargs['model']} not supported for chat")

        if "stream" in all_kwargs:
            warnings.warn(
                "Parameter `stream` is not supported by the `chat` method."
                "Use the `stream_chat` method instead"
            )
        response = completion_with_retry(
            client=self._client,
            max_retries=self.max_retries,
            chat=True,
            message=prompt,
            chat_history=history,
            documents=documents,
            **all_kwargs,
        )
        return ChatResponse(
            message=ChatMessage(role=MessageRole.ASSISTANT, content=response.text),
            raw=response.__dict__,
        )

    @llm_completion_callback()
    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        all_kwargs = self._get_all_kwargs(**kwargs)
        if "stream" in all_kwargs:
            warnings.warn(
                "Parameter `stream` is not supported by the `chat` method."
                "Use the `stream_chat` method instead"
            )

        response = completion_with_retry(
            client=self._client,
            max_retries=self.max_retries,
            chat=False,
            prompt=prompt,
            **all_kwargs,
        )

        return CompletionResponse(
            text=response.generations[0].text,
            raw=response.__dict__,
        )

    @llm_chat_callback()
    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        prompt = messages[-1].content
        remaining, documents = remove_documents_from_messages(messages[:-1])
        history = messages_to_cohere_history(remaining)

        all_kwargs = self._get_all_kwargs(**kwargs)
        all_kwargs["stream"] = True
        if all_kwargs["model"] not in CHAT_MODELS:
            raise ValueError(f"{all_kwargs['model']} not supported for chat")
        response = completion_with_retry(
            client=self._client,
            max_retries=self.max_retries,
            chat=True,
            message=prompt,
            chat_history=history,
            documents=documents,
            **all_kwargs,
        )

        def gen() -> ChatResponseGen:
            content = ""
            role = MessageRole.ASSISTANT
            for r in response:
                if "text" in r.__dict__:
                    content_delta = r.text
                else:
                    content_delta = ""
                content += content_delta
                yield ChatResponse(
                    message=ChatMessage(role=role, content=content),
                    delta=content_delta,
                    raw=r.__dict__,
                )

        return gen()

    @llm_completion_callback()
    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        all_kwargs = self._get_all_kwargs(**kwargs)
        all_kwargs["stream"] = True

        response = completion_with_retry(
            client=self._client,
            max_retries=self.max_retries,
            chat=False,
            prompt=prompt,
            **all_kwargs,
        )

        def gen() -> CompletionResponseGen:
            content = ""
            for r in response:
                content_delta = r.text
                content += content_delta
                yield CompletionResponse(
                    text=content, delta=content_delta, raw=r._asdict()
                )

        return gen()

    @llm_chat_callback()
    async def achat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponse:
        history = messages_to_cohere_history(messages[:-1])
        prompt = messages[-1].content
        all_kwargs = self._get_all_kwargs(**kwargs)
        if all_kwargs["model"] not in CHAT_MODELS:
            raise ValueError(f"{all_kwargs['model']} not supported for chat")
        if "stream" in all_kwargs:
            warnings.warn(
                "Parameter `stream` is not supported by the `chat` method."
                "Use the `stream_chat` method instead"
            )

        response = await acompletion_with_retry(
            aclient=self._aclient,
            max_retries=self.max_retries,
            chat=True,
            message=prompt,
            chat_history=history,
            **all_kwargs,
        )

        return ChatResponse(
            message=ChatMessage(role=MessageRole.ASSISTANT, content=response.text),
            raw=response.__dict__,
        )

    @llm_completion_callback()
    async def acomplete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        all_kwargs = self._get_all_kwargs(**kwargs)
        if "stream" in all_kwargs:
            warnings.warn(
                "Parameter `stream` is not supported by the `chat` method."
                "Use the `stream_chat` method instead"
            )

        response = await acompletion_with_retry(
            aclient=self._aclient,
            max_retries=self.max_retries,
            chat=False,
            prompt=prompt,
            **all_kwargs,
        )

        return CompletionResponse(
            text=response.generations[0].text,
            raw=response.__dict__,
        )

    @llm_chat_callback()
    async def astream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        history = messages_to_cohere_history(messages[:-1])
        prompt = messages[-1].content
        all_kwargs = self._get_all_kwargs(**kwargs)
        all_kwargs["stream"] = True
        if all_kwargs["model"] not in CHAT_MODELS:
            raise ValueError(f"{all_kwargs['model']} not supported for chat")
        response = await acompletion_with_retry(
            aclient=self._aclient,
            max_retries=self.max_retries,
            chat=True,
            message=prompt,
            chat_history=history,
            **all_kwargs,
        )

        async def gen() -> ChatResponseAsyncGen:
            content = ""
            role = MessageRole.ASSISTANT
            async for r in response:
                if "text" in r.__dict__:
                    content_delta = r.text
                else:
                    content_delta = ""
                content += content_delta
                yield ChatResponse(
                    message=ChatMessage(role=role, content=content),
                    delta=content_delta,
                    raw=r.__dict__,
                )

        return gen()

    @llm_completion_callback()
    async def astream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        all_kwargs = self._get_all_kwargs(**kwargs)
        all_kwargs["stream"] = True

        response = await acompletion_with_retry(
            aclient=self._aclient,
            max_retries=self.max_retries,
            chat=False,
            prompt=prompt,
            **all_kwargs,
        )

        async def gen() -> CompletionResponseAsyncGen:
            content = ""
            async for r in response:
                content_delta = r.text
                content += content_delta
                yield CompletionResponse(
                    text=content, delta=content_delta, raw=r._asdict()
                )

        return gen()

class_name classmethod #

class_name() -> str

获取类名。

Source code in llama_index/llms/cohere/base.py
101
102
103
104
@classmethod
def class_name(cls) -> str:
    """获取类名。"""
    return "Cohere_LLM"