Skip to content

Deepinfra

DeepInfraLLM #

Bases: LLM

DeepInfra LLM.

例子

pip install llama-index-llms-deepinfra

from llama_index.llms.deepinfra import DeepInfraLLM

llm = DeepInfraLLM(
    model="mistralai/Mixtral-8x22B-Instruct-v0.1", # 默认模型名称
    api_key = "your-deepinfra-api-key",
    temperature=0.5,
    max_tokens=50,
    additional_kwargs={"top_p": 0.9},
)

response = llm.complete("Hello World!")
print(response)
Source code in llama_index/llms/deepinfra/base.py
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
class DeepInfraLLM(LLM):
    """DeepInfra LLM.

    例子:
        `pip install llama-index-llms-deepinfra`

        ```python
        from llama_index.llms.deepinfra import DeepInfraLLM

        llm = DeepInfraLLM(
            model="mistralai/Mixtral-8x22B-Instruct-v0.1", # 默认模型名称
            api_key = "your-deepinfra-api-key",
            temperature=0.5,
            max_tokens=50,
            additional_kwargs={"top_p": 0.9},
        )

        response = llm.complete("Hello World!")
        print(response)
        ```
"""

    model: str = Field(
        default=DEFAULT_MODEL_NAME, description="The DeepInfra model to use."
    )

    temperature: float = Field(
        default=DEFAULT_TEMPERATURE,
        description="The temperature to use during generation.",
        gte=0.0,
        lte=1.0,
    )
    max_tokens: Optional[int] = Field(
        description="The maximum number of tokens to generate.",
        gt=0,
    )

    timeout: Optional[float] = Field(
        default=None, description="The timeout to use in seconds.", gte=0
    )
    max_retries: int = Field(
        default=10, description="The maximum number of API retries.", gte=0
    )

    _api_key: Optional[str] = PrivateAttr()

    generate_kwargs: Dict[str, Any] = Field(
        default_factory=dict, description="Additional keyword arguments for generation."
    )

    _client: DeepInfraClient = PrivateAttr()

    def __init__(
        self,
        model: str = DEFAULT_MODEL_NAME,
        additional_kwargs: Optional[Dict[str, Any]] = None,
        temperature: float = DEFAULT_TEMPERATURE,
        max_tokens: Optional[int] = None,
        max_retries: int = 10,
        api_base: str = API_BASE,
        timeout: Optional[float] = None,
        api_key: Optional[str] = None,
        callback_manager: Optional[CallbackManager] = None,
        system_prompt: Optional[str] = None,
        messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
        completion_to_prompt: Optional[Callable[[str], str]] = None,
        pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
        output_parser: Optional[BaseOutputParser] = None,
    ) -> None:
        additional_kwargs = additional_kwargs or {}
        callback_manager = callback_manager or CallbackManager([])
        self._api_key = get_from_param_or_env("api_key", api_key, ENV_VARIABLE)
        self._client = DeepInfraClient(
            api_key=self._api_key,
            api_base=api_base,
            timeout=timeout,
            max_retries=max_retries,
        )
        super().__init__(
            model=model,
            api_base=api_base,
            api_key=api_key,
            temperature=temperature,
            max_tokens=max_tokens,
            timeout=timeout,
            additional_kwargs=additional_kwargs,
            max_retries=max_retries,
            callback_manager=callback_manager,
            system_prompt=system_prompt,
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
            pydantic_program_mode=pydantic_program_mode,
            output_parser=output_parser,
        )

    @classmethod
    def class_name(cls) -> str:
        return "DeepInfra_LLM"

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(
            num_output=self.max_tokens,
            is_chat_model=self._is_chat_model,
            model=self.model,
        )

    @property
    def _is_chat_model(self) -> bool:
        return True

    # Synchronous Methods
    @llm_completion_callback()
    def complete(self, prompt: str, **kwargs) -> CompletionResponse:
        """为给定的提示生成完成。

Args:
    prompt (str): 要生成完成的输入提示。
    **kwargs: API请求的额外关键字参数。

Returns:
    str: 生成的文本完成。
"""
        payload = self._build_payload(prompt=prompt, **kwargs)
        result = self._client.request(INFERENCE_ENDPOINT, payload)
        return CompletionResponse(text=maybe_extract_from_json(result), raw=result)

    @llm_completion_callback()
    def stream_complete(self, prompt: str, **kwargs) -> CompletionResponseGen:
        """为给定的提示生成同步流式完成。

Args:
    prompt (str): 要生成完成的输入提示。
    **kwargs: API请求的额外关键字参数。

产出:
    CompletionResponseGen: 流式文本完成。
"""
        payload = self._build_payload(prompt=prompt, **kwargs)

        content = ""
        for response_dict in self._client.request_stream(INFERENCE_ENDPOINT, payload):
            content_delta = maybe_extract_from_json(response_dict)
            content += content_delta
            yield CompletionResponse(
                text=content, delta=content_delta, raw=response_dict
            )

    @llm_chat_callback()
    def chat(self, messages: Sequence[ChatMessage], **kwargs) -> ChatResponse:
        """为给定的消息生成聊天响应。

Args:
    messages(Sequence[ChatMessage]):一系列聊天消息。
    **kwargs:API请求的额外关键字参数。

Returns:
    ChatResponse:包含一系列消息的聊天响应。
"""
        messages = chat_messages_to_list(messages)
        payload = self._build_payload(messages=messages, **kwargs)
        result = self._client.request(CHAT_API_ENDPOINT, payload)

        return ChatResponse(
            message=ChatMessage(
                role=result["choices"][-1]["message"]["role"],
                content=result["choices"][-1]["message"]["content"],
            ),
            raw=result,
        )

    @llm_chat_callback()
    def stream_chat(
        self, chat_messages: Sequence[ChatMessage], **kwargs
    ) -> ChatResponseGen:
        """为给定的消息生成同步流式聊天响应。

Args:
    messages(Sequence[ChatMessage]):聊天消息的序列。
    **kwargs:API请求的其他关键字参数。

产出:
    ChatResponseGen:包含消息序列的聊天响应。
"""
        messages = chat_messages_to_list(chat_messages)
        payload = self._build_payload(messages=messages, **kwargs)

        content = ""
        role = MessageRole.ASSISTANT
        for response_dict in self._client.request_stream(CHAT_API_ENDPOINT, payload):
            delta = response_dict["choices"][-1]["delta"]
            """
            Check if the delta contains content.
            """
            if delta.get("content", None):
                content_delta = delta["content"]
                content += delta["content"]
                message = ChatMessage(
                    role=role,
                    content=content,
                )
                yield ChatResponse(
                    message=message, raw=response_dict, delta=content_delta
                )

    # Asynchronous Methods
    @llm_completion_callback()
    async def acomplete(self, prompt: str, **kwargs) -> CompletionResponse:
        """异步生成给定提示的完成。

Args:
    prompt(str):要生成完成的输入提示。
    **kwargs:API请求的其他关键字参数。

Returns:
    CompletionResponse:生成的文本完成。
"""
        payload = self._build_payload(prompt=prompt, **kwargs)

        result = await self._client.arequest(INFERENCE_ENDPOINT, payload)
        return CompletionResponse(text=maybe_extract_from_json(result), raw=result)

    @llm_completion_callback()
    async def astream_complete(
        self, prompt: str, **kwargs
    ) -> CompletionResponseAsyncGen:
        """异步生成给定提示的流式完成。

Args:
    prompt (str): 要生成完成的输入提示。
    **kwargs: API请求的额外关键字参数。

Returns:
    CompletionResponseAsyncGen: 流式文本完成。
"""
        payload = self._build_payload(prompt=prompt, **kwargs)

        async def gen():
            content = ""
            async for response_dict in self._client.arequest_stream(
                INFERENCE_ENDPOINT, payload
            ):
                content_delta = maybe_extract_from_json(response_dict)
                content += content_delta
                yield CompletionResponse(
                    text=content, delta=content_delta, raw=response_dict
                )

        return gen()

    @llm_chat_callback()
    async def achat(
        self, chat_messages: Sequence[ChatMessage], **kwargs
    ) -> ChatResponse:
        """异步生成给定消息的聊天响应。

Args:
    messages(Sequence[ChatMessage]):一系列聊天消息。
    **kwargs:API请求的额外关键字参数。

Returns:
    ChatResponse:包含一系列消息的聊天响应。
"""
        messages = chat_messages_to_list(chat_messages)
        payload = self._build_payload(messages=messages, **kwargs)

        result = await self._client.arequest(CHAT_API_ENDPOINT, payload)
        return ChatResponse(
            message=ChatMessage(
                role=result["choices"][-1]["message"]["role"],
                content=result["choices"][-1]["message"]["content"],
            ),
            raw=result,
        )

    @llm_chat_callback()
    async def astream_chat(
        self, chat_messages: Sequence[ChatMessage], **kwargs
    ) -> ChatResponseAsyncGen:
        """
        Asynchronously generate a streaming chat response for the given messages.

        Args:
            messages (Sequence[ChatMessage]): A sequence of chat messages.
            **kwargs: Additional keyword arguments for the API request.

        Yields:
            ChatResponseAsyncGen: The chat response containing a sequence of messages.
        """
        messages = chat_messages_to_list(chat_messages)
        payload = self._build_payload(messages=messages, **kwargs)

        async def gen():
            content = ""
            role = MessageRole.ASSISTANT
            async for response_dict in self._client.arequest_stream(
                CHAT_API_ENDPOINT, payload
            ):
                delta = response_dict["choices"][-1]["delta"]
                """
                Check if the delta contains content.
                """
                if delta.get("content", None):
                    content_delta = delta["content"]
                    content += delta["content"]
                    message = ChatMessage(
                        role=role,
                        content=content,
                    )
                    yield ChatResponse(
                        message=message, raw=response_dict, delta=content_delta
                    )

        return gen()

    # Utility Methods
    def get_model_endpoint(self) -> str:
        """
        获取DeepInfra模型端点。
        """
        return f"{INFERENCE_ENDPOINT}/{self.model}"

    def _build_payload(self, **kwargs) -> Dict[str, Any]:
        """构建API请求的有效载荷。
温度和max_tokens参数明确覆盖generate_kwargs中的相应值。
任何提供的kwargs都会覆盖所有其他参数,包括温度和max_tokens。

Args:
    prompt(str):要生成完成内容的输入提示。
    stream(bool):是否流式传输响应。
    **kwargs:API请求的其他关键字参数。

Returns:
    Dict[str, Any]:API请求有效载荷。
"""
        return {
            **self.generate_kwargs,
            "temperature": self.temperature,
            "max_tokens": self.max_tokens,
            "model": self.model,
            **kwargs,
        }

complete #

complete(prompt: str, **kwargs) -> CompletionResponse

为给定的提示生成完成。

Parameters:

Name Type Description Default
prompt str

要生成完成的输入提示。

required
**kwargs

API请求的额外关键字参数。

{}

Returns:

Name Type Description
str CompletionResponse

生成的文本完成。

Source code in llama_index/llms/deepinfra/base.py
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    @llm_completion_callback()
    def complete(self, prompt: str, **kwargs) -> CompletionResponse:
        """为给定的提示生成完成。

Args:
    prompt (str): 要生成完成的输入提示。
    **kwargs: API请求的额外关键字参数。

Returns:
    str: 生成的文本完成。
"""
        payload = self._build_payload(prompt=prompt, **kwargs)
        result = self._client.request(INFERENCE_ENDPOINT, payload)
        return CompletionResponse(text=maybe_extract_from_json(result), raw=result)

stream_complete #

stream_complete(
    prompt: str, **kwargs
) -> CompletionResponseGen

为给定的提示生成同步流式完成。

Parameters:

Name Type Description Default
prompt str

要生成完成的输入提示。

required
**kwargs

API请求的额外关键字参数。

{}
产出

CompletionResponseGen: 流式文本完成。

Source code in llama_index/llms/deepinfra/base.py
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    @llm_completion_callback()
    def stream_complete(self, prompt: str, **kwargs) -> CompletionResponseGen:
        """为给定的提示生成同步流式完成。

Args:
    prompt (str): 要生成完成的输入提示。
    **kwargs: API请求的额外关键字参数。

产出:
    CompletionResponseGen: 流式文本完成。
"""
        payload = self._build_payload(prompt=prompt, **kwargs)

        content = ""
        for response_dict in self._client.request_stream(INFERENCE_ENDPOINT, payload):
            content_delta = maybe_extract_from_json(response_dict)
            content += content_delta
            yield CompletionResponse(
                text=content, delta=content_delta, raw=response_dict
            )

chat #

chat(
    messages: Sequence[ChatMessage], **kwargs
) -> ChatResponse

为给定的消息生成聊天响应。

Returns:

Type Description
ChatResponse

ChatResponse:包含一系列消息的聊天响应。

Source code in llama_index/llms/deepinfra/base.py
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    @llm_chat_callback()
    def chat(self, messages: Sequence[ChatMessage], **kwargs) -> ChatResponse:
        """为给定的消息生成聊天响应。

Args:
    messages(Sequence[ChatMessage]):一系列聊天消息。
    **kwargs:API请求的额外关键字参数。

Returns:
    ChatResponse:包含一系列消息的聊天响应。
"""
        messages = chat_messages_to_list(messages)
        payload = self._build_payload(messages=messages, **kwargs)
        result = self._client.request(CHAT_API_ENDPOINT, payload)

        return ChatResponse(
            message=ChatMessage(
                role=result["choices"][-1]["message"]["role"],
                content=result["choices"][-1]["message"]["content"],
            ),
            raw=result,
        )

stream_chat #

stream_chat(
    chat_messages: Sequence[ChatMessage], **kwargs
) -> ChatResponseGen

为给定的消息生成同步流式聊天响应。

产出: ChatResponseGen:包含消息序列的聊天响应。

Source code in llama_index/llms/deepinfra/base.py
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    @llm_chat_callback()
    def stream_chat(
        self, chat_messages: Sequence[ChatMessage], **kwargs
    ) -> ChatResponseGen:
        """为给定的消息生成同步流式聊天响应。

Args:
    messages(Sequence[ChatMessage]):聊天消息的序列。
    **kwargs:API请求的其他关键字参数。

产出:
    ChatResponseGen:包含消息序列的聊天响应。
"""
        messages = chat_messages_to_list(chat_messages)
        payload = self._build_payload(messages=messages, **kwargs)

        content = ""
        role = MessageRole.ASSISTANT
        for response_dict in self._client.request_stream(CHAT_API_ENDPOINT, payload):
            delta = response_dict["choices"][-1]["delta"]
            """
            Check if the delta contains content.
            """
            if delta.get("content", None):
                content_delta = delta["content"]
                content += delta["content"]
                message = ChatMessage(
                    role=role,
                    content=content,
                )
                yield ChatResponse(
                    message=message, raw=response_dict, delta=content_delta
                )

acomplete async #

acomplete(prompt: str, **kwargs) -> CompletionResponse

异步生成给定提示的完成。

Returns:

Type Description
CompletionResponse

CompletionResponse:生成的文本完成。

Source code in llama_index/llms/deepinfra/base.py
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    @llm_completion_callback()
    async def acomplete(self, prompt: str, **kwargs) -> CompletionResponse:
        """异步生成给定提示的完成。

Args:
    prompt(str):要生成完成的输入提示。
    **kwargs:API请求的其他关键字参数。

Returns:
    CompletionResponse:生成的文本完成。
"""
        payload = self._build_payload(prompt=prompt, **kwargs)

        result = await self._client.arequest(INFERENCE_ENDPOINT, payload)
        return CompletionResponse(text=maybe_extract_from_json(result), raw=result)

astream_complete async #

astream_complete(
    prompt: str, **kwargs
) -> CompletionResponseAsyncGen

异步生成给定提示的流式完成。

Parameters:

Name Type Description Default
prompt str

要生成完成的输入提示。

required
**kwargs

API请求的额外关键字参数。

{}

Returns:

Name Type Description
CompletionResponseAsyncGen CompletionResponseAsyncGen

流式文本完成。

Source code in llama_index/llms/deepinfra/base.py
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    @llm_completion_callback()
    async def astream_complete(
        self, prompt: str, **kwargs
    ) -> CompletionResponseAsyncGen:
        """异步生成给定提示的流式完成。

Args:
    prompt (str): 要生成完成的输入提示。
    **kwargs: API请求的额外关键字参数。

Returns:
    CompletionResponseAsyncGen: 流式文本完成。
"""
        payload = self._build_payload(prompt=prompt, **kwargs)

        async def gen():
            content = ""
            async for response_dict in self._client.arequest_stream(
                INFERENCE_ENDPOINT, payload
            ):
                content_delta = maybe_extract_from_json(response_dict)
                content += content_delta
                yield CompletionResponse(
                    text=content, delta=content_delta, raw=response_dict
                )

        return gen()

achat async #

achat(
    chat_messages: Sequence[ChatMessage], **kwargs
) -> ChatResponse

异步生成给定消息的聊天响应。

Returns:

Type Description
ChatResponse

ChatResponse:包含一系列消息的聊天响应。

Source code in llama_index/llms/deepinfra/base.py
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    @llm_chat_callback()
    async def achat(
        self, chat_messages: Sequence[ChatMessage], **kwargs
    ) -> ChatResponse:
        """异步生成给定消息的聊天响应。

Args:
    messages(Sequence[ChatMessage]):一系列聊天消息。
    **kwargs:API请求的额外关键字参数。

Returns:
    ChatResponse:包含一系列消息的聊天响应。
"""
        messages = chat_messages_to_list(chat_messages)
        payload = self._build_payload(messages=messages, **kwargs)

        result = await self._client.arequest(CHAT_API_ENDPOINT, payload)
        return ChatResponse(
            message=ChatMessage(
                role=result["choices"][-1]["message"]["role"],
                content=result["choices"][-1]["message"]["content"],
            ),
            raw=result,
        )

astream_chat async #

astream_chat(
    chat_messages: Sequence[ChatMessage], **kwargs
) -> ChatResponseAsyncGen

Asynchronously generate a streaming chat response for the given messages.

Parameters:

Name Type Description Default
messages Sequence[ChatMessage]

A sequence of chat messages.

required
**kwargs

Additional keyword arguments for the API request.

{}

Yields:

Name Type Description
ChatResponseAsyncGen ChatResponseAsyncGen

The chat response containing a sequence of messages.

Source code in llama_index/llms/deepinfra/base.py
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
@llm_chat_callback()
async def astream_chat(
    self, chat_messages: Sequence[ChatMessage], **kwargs
) -> ChatResponseAsyncGen:
    """
    Asynchronously generate a streaming chat response for the given messages.

    Args:
        messages (Sequence[ChatMessage]): A sequence of chat messages.
        **kwargs: Additional keyword arguments for the API request.

    Yields:
        ChatResponseAsyncGen: The chat response containing a sequence of messages.
    """
    messages = chat_messages_to_list(chat_messages)
    payload = self._build_payload(messages=messages, **kwargs)

    async def gen():
        content = ""
        role = MessageRole.ASSISTANT
        async for response_dict in self._client.arequest_stream(
            CHAT_API_ENDPOINT, payload
        ):
            delta = response_dict["choices"][-1]["delta"]
            """
            Check if the delta contains content.
            """
            if delta.get("content", None):
                content_delta = delta["content"]
                content += delta["content"]
                message = ChatMessage(
                    role=role,
                    content=content,
                )
                yield ChatResponse(
                    message=message, raw=response_dict, delta=content_delta
                )

    return gen()

get_model_endpoint #

get_model_endpoint() -> str

获取DeepInfra模型端点。

Source code in llama_index/llms/deepinfra/base.py
364
365
366
367
368
def get_model_endpoint(self) -> str:
    """
    获取DeepInfra模型端点。
    """
    return f"{INFERENCE_ENDPOINT}/{self.model}"