16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140 | class MultiDocumentAgentsPack(BaseLlamaPack):
"""多文档代理包。
给定一组文档,构建我们的多文档代理架构。
- 在代理文档上设置一个文档代理(能够进行问答和摘要)
- 在文档代理上设置一个顶层代理"""
def __init__(
self,
docs: List[Document],
doc_titles: List[str],
doc_descriptions: List[str],
**kwargs: Any,
) -> None:
"""初始化参数。"""
self.node_parser = SentenceSplitter()
self.llm = OpenAI(temperature=0, model="gpt-3.5-turbo")
self.service_context = ServiceContext.from_defaults(llm=self.llm)
# Build agents dictionary
self.agents = {}
# this is for the baseline
all_nodes = []
# build agent for each document
for idx, doc in enumerate(docs):
doc_title = doc_titles[idx]
doc_description = doc_descriptions[idx]
nodes = self.node_parser.get_nodes_from_documents([doc])
all_nodes.extend(nodes)
# build vector index
vector_index = VectorStoreIndex(nodes, service_context=self.service_context)
# build summary index
summary_index = SummaryIndex(nodes, service_context=self.service_context)
# define query engines
vector_query_engine = vector_index.as_query_engine()
summary_query_engine = summary_index.as_query_engine()
# define tools
query_engine_tools = [
QueryEngineTool(
query_engine=vector_query_engine,
metadata=ToolMetadata(
name="vector_tool",
description=(
"Useful for questions related to specific aspects of"
f" {doc_title}."
),
),
),
QueryEngineTool(
query_engine=summary_query_engine,
metadata=ToolMetadata(
name="summary_tool",
description=(
"Useful for any requests that require a holistic summary"
f" of EVERYTHING about {doc_title}. "
),
),
),
]
# build agent
function_llm = OpenAI(model="gpt-4")
agent = OpenAIAgent.from_tools(
query_engine_tools,
llm=function_llm,
verbose=True,
system_prompt=f"""\
You are a specialized agent designed to answer queries about {doc_title}.
You must ALWAYS use at least one of the tools provided when answering a question; do NOT rely on prior knowledge.\
""",
)
self.agents[doc_title] = agent
# build top-level, retrieval-enabled OpenAI Agent
# define tool for each document agent
all_tools = []
for idx, doc in enumerate(docs):
doc_title = doc_titles[idx]
doc_description = doc_descriptions[idx]
wiki_summary = (
f"Use this tool if you want to answer any questions about {doc_title}.\n"
f"Doc description: {doc_description}\n"
)
doc_tool = QueryEngineTool(
query_engine=self.agents[doc_title],
metadata=ToolMetadata(
name=f"tool_{doc_title}",
description=wiki_summary,
),
)
all_tools.append(doc_tool)
tool_mapping = SimpleToolNodeMapping.from_objects(all_tools)
self.obj_index = ObjectIndex.from_objects(
all_tools,
tool_mapping,
VectorStoreIndex,
)
self.top_agent = FnRetrieverOpenAIAgent.from_retriever(
self.obj_index.as_retriever(similarity_top_k=3),
system_prompt=""" \
You are an agent designed to answer queries about a set of given cities.
Please always use the tools provided to answer a question. Do not rely on prior knowledge.\
""",
verbose=True,
)
def get_modules(self) -> Dict[str, Any]:
"""获取模块。"""
return {
"top_agent": self.top_agent,
"obj_index": self.obj_index,
"doc_agents": self.agents,
}
def run(self, *args: Any, **kwargs: Any) -> Any:
"""运行流水线。"""
return self.top_agent.query(*args, **kwargs)
|