18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235 | class TreeSummarize(BaseSynthesizer):
"""树总结响应生成器。
该响应生成器以自底向上的方式递归地合并文本块并对其进行总结(即从叶子到根构建树)。
更具体地,在每个递归步骤中:
1. 我们重新打包文本块,使每个块填充LLM的上下文窗口
2. 如果只有一个块,我们给出最终响应
3. 否则,我们总结每个块,并递归地总结总结。"""
def __init__(
self,
llm: Optional[LLMPredictorType] = None,
callback_manager: Optional[CallbackManager] = None,
prompt_helper: Optional[PromptHelper] = None,
summary_template: Optional[BasePromptTemplate] = None,
output_cls: Optional[BaseModel] = None,
streaming: bool = False,
use_async: bool = False,
verbose: bool = False,
# deprecated
service_context: Optional[ServiceContext] = None,
) -> None:
if service_context is not None:
prompt_helper = service_context.prompt_helper
super().__init__(
llm=llm,
callback_manager=callback_manager,
prompt_helper=prompt_helper,
service_context=service_context,
streaming=streaming,
output_cls=output_cls,
)
self._summary_template = summary_template or DEFAULT_TREE_SUMMARIZE_PROMPT_SEL
self._use_async = use_async
self._verbose = verbose
def _get_prompts(self) -> PromptDictType:
"""获取提示。"""
return {"summary_template": self._summary_template}
def _update_prompts(self, prompts: PromptDictType) -> None:
"""更新提示。"""
if "summary_template" in prompts:
self._summary_template = prompts["summary_template"]
async def aget_response(
self,
query_str: str,
text_chunks: Sequence[str],
**response_kwargs: Any,
) -> RESPONSE_TEXT_TYPE:
"""获取树形总结响应。"""
summary_template = self._summary_template.partial_format(query_str=query_str)
# repack text_chunks so that each chunk fills the context window
text_chunks = self._prompt_helper.repack(
summary_template, text_chunks=text_chunks
)
if self._verbose:
print(f"{len(text_chunks)} text chunks after repacking")
# give final response if there is only one chunk
if len(text_chunks) == 1:
response: RESPONSE_TEXT_TYPE
if self._streaming:
response = await self._llm.astream(
summary_template, context_str=text_chunks[0], **response_kwargs
)
else:
if self._output_cls is None:
response = await self._llm.apredict(
summary_template,
context_str=text_chunks[0],
**response_kwargs,
)
else:
response = await self._llm.astructured_predict(
self._output_cls,
summary_template,
context_str=text_chunks[0],
**response_kwargs,
)
# return pydantic object if output_cls is specified
return response
else:
# summarize each chunk
if self._output_cls is None:
tasks = [
self._llm.apredict(
summary_template,
context_str=text_chunk,
**response_kwargs,
)
for text_chunk in text_chunks
]
else:
tasks = [
self._llm.astructured_predict(
self._output_cls,
summary_template,
context_str=text_chunk,
**response_kwargs,
)
for text_chunk in text_chunks
]
summary_responses = await asyncio.gather(*tasks)
if self._output_cls is not None:
summaries = [summary.json() for summary in summary_responses]
else:
summaries = summary_responses
# recursively summarize the summaries
return await self.aget_response(
query_str=query_str,
text_chunks=summaries,
**response_kwargs,
)
def get_response(
self,
query_str: str,
text_chunks: Sequence[str],
**response_kwargs: Any,
) -> RESPONSE_TEXT_TYPE:
"""获取树形总结响应。"""
summary_template = self._summary_template.partial_format(query_str=query_str)
# repack text_chunks so that each chunk fills the context window
text_chunks = self._prompt_helper.repack(
summary_template, text_chunks=text_chunks
)
if self._verbose:
print(f"{len(text_chunks)} text chunks after repacking")
# give final response if there is only one chunk
if len(text_chunks) == 1:
response: RESPONSE_TEXT_TYPE
if self._streaming:
response = self._llm.stream(
summary_template, context_str=text_chunks[0], **response_kwargs
)
else:
if self._output_cls is None:
response = self._llm.predict(
summary_template,
context_str=text_chunks[0],
**response_kwargs,
)
else:
response = self._llm.structured_predict(
self._output_cls,
summary_template,
context_str=text_chunks[0],
**response_kwargs,
)
return response
else:
# summarize each chunk
if self._use_async:
if self._output_cls is None:
tasks = [
self._llm.apredict(
summary_template,
context_str=text_chunk,
**response_kwargs,
)
for text_chunk in text_chunks
]
else:
tasks = [
self._llm.astructured_predict(
self._output_cls,
summary_template,
context_str=text_chunk,
**response_kwargs,
)
for text_chunk in text_chunks
]
summary_responses = run_async_tasks(tasks)
if self._output_cls is not None:
summaries = [summary.json() for summary in summary_responses]
else:
summaries = summary_responses
else:
if self._output_cls is None:
summaries = [
self._llm.predict(
summary_template,
context_str=text_chunk,
**response_kwargs,
)
for text_chunk in text_chunks
]
else:
summaries = [
self._llm.structured_predict(
self._output_cls,
summary_template,
context_str=text_chunk,
**response_kwargs,
)
for text_chunk in text_chunks
]
summaries = [summary.json() for summary in summaries]
# recursively summarize the summaries
return self.get_response(
query_str=query_str, text_chunks=summaries, **response_kwargs
)
|