Skip to content

Knowledge graph

KGTableRetriever #

Bases: BaseRetriever

KG表检索器。

参数在子类之间共享。

Parameters:

Name Type Description Default
query_keyword_extract_template Optional[QueryKGExtractPrompt]

查询KG提取提示(参见::ref:Prompt-Templates)。

None
refine_template Optional[BasePromptTemplate]

一个细化提示(参见::ref:Prompt-Templates)。

required
text_qa_template Optional[BasePromptTemplate]

一个问答提示(参见::ref:Prompt-Templates)。

required
max_keywords_per_query int

从查询中提取的关键词的最大数量。

10
num_chunks_per_query int

查询的文本块的最大数量。

10
include_text bool

在查询过程中使用每个相关三元组的文档文本源。

True
retriever_mode KGRetrieverMode

指定是否使用关键词、嵌入或两者来查找相关的三元组。应为"keyword"、"embedding"或"hybrid"之一。

KEYWORD
similarity_top_k int

要使用的顶部嵌入的数量(如果使用嵌入)。

2
graph_store_query_depth int

图存储查询的深度。

2
use_global_node_triplets bool

是否从与关键词匹配的文本块中获取更多关键词(实体)。这有助于引入更多的全局知识。虽然更昂贵,因此默认情况下应关闭。

False
max_knowledge_sequence int

包括在响应中的知识序列的最大数量。默认情况下为30。

REL_TEXT_LIMIT
Source code in llama_index/core/indices/knowledge_graph/retrievers.py
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
class KGTableRetriever(BaseRetriever):
    """KG表检索器。

    参数在子类之间共享。

    Args:
        query_keyword_extract_template (Optional[QueryKGExtractPrompt]): 查询KG提取提示(参见::ref:`Prompt-Templates`)。
        refine_template (Optional[BasePromptTemplate]): 一个细化提示(参见::ref:`Prompt-Templates`)。
        text_qa_template (Optional[BasePromptTemplate]): 一个问答提示(参见::ref:`Prompt-Templates`)。
        max_keywords_per_query (int): 从查询中提取的关键词的最大数量。
        num_chunks_per_query (int): 查询的文本块的最大数量。
        include_text (bool): 在查询过程中使用每个相关三元组的文档文本源。
        retriever_mode (KGRetrieverMode): 指定是否使用关键词、嵌入或两者来查找相关的三元组。应为"keyword"、"embedding"或"hybrid"之一。
        similarity_top_k (int): 要使用的顶部嵌入的数量(如果使用嵌入)。
        graph_store_query_depth (int): 图存储查询的深度。
        use_global_node_triplets (bool): 是否从与关键词匹配的文本块中获取更多关键词(实体)。这有助于引入更多的全局知识。虽然更昂贵,因此默认情况下应关闭。
        max_knowledge_sequence (int): 包括在响应中的知识序列的最大数量。默认情况下为30。"""

    def __init__(
        self,
        index: KnowledgeGraphIndex,
        llm: Optional[LLM] = None,
        embed_model: Optional[BaseEmbedding] = None,
        query_keyword_extract_template: Optional[BasePromptTemplate] = None,
        max_keywords_per_query: int = 10,
        num_chunks_per_query: int = 10,
        include_text: bool = True,
        retriever_mode: Optional[KGRetrieverMode] = KGRetrieverMode.KEYWORD,
        similarity_top_k: int = 2,
        graph_store_query_depth: int = 2,
        use_global_node_triplets: bool = False,
        max_knowledge_sequence: int = REL_TEXT_LIMIT,
        callback_manager: Optional[CallbackManager] = None,
        object_map: Optional[dict] = None,
        verbose: bool = False,
        **kwargs: Any,
    ) -> None:
        """初始化参数。"""
        assert isinstance(index, KnowledgeGraphIndex)
        self._index = index
        self._index_struct = self._index.index_struct
        self._docstore = self._index.docstore

        self.max_keywords_per_query = max_keywords_per_query
        self.num_chunks_per_query = num_chunks_per_query
        self.query_keyword_extract_template = query_keyword_extract_template or DQKET
        self.similarity_top_k = similarity_top_k
        self._include_text = include_text
        self._retriever_mode = (
            KGRetrieverMode(retriever_mode)
            if retriever_mode
            else KGRetrieverMode.KEYWORD
        )

        self._llm = llm or llm_from_settings_or_context(Settings, index.service_context)
        self._embed_model = embed_model or embed_model_from_settings_or_context(
            Settings, index.service_context
        )

        self._graph_store = index.graph_store
        self.graph_store_query_depth = graph_store_query_depth
        self.use_global_node_triplets = use_global_node_triplets
        self.max_knowledge_sequence = max_knowledge_sequence
        self._verbose = kwargs.get("verbose", False)
        refresh_schema = kwargs.get("refresh_schema", False)
        try:
            self._graph_schema = self._graph_store.get_schema(refresh=refresh_schema)
        except NotImplementedError:
            self._graph_schema = ""
        except Exception as e:
            logger.warning(f"Failed to get graph schema: {e}")
            self._graph_schema = ""
        super().__init__(
            callback_manager=callback_manager
            or callback_manager_from_settings_or_context(
                Settings, index.service_context
            ),
            object_map=object_map,
            verbose=verbose,
        )

    def _get_keywords(self, query_str: str) -> List[str]:
        """提取关键词。"""
        response = self._llm.predict(
            self.query_keyword_extract_template,
            max_keywords=self.max_keywords_per_query,
            question=query_str,
        )
        keywords = extract_keywords_given_response(
            response, start_token="KEYWORDS:", lowercase=False
        )
        return list(keywords)

    def _extract_rel_text_keywords(self, rel_texts: List[str]) -> List[str]:
        """找到给定关系文本三元组的关键词。"""
        keywords = []

        for rel_text in rel_texts:
            splited_texts = rel_text.split(",")

            if len(splited_texts) <= 0:
                continue
            keyword = splited_texts[0]
            if keyword:
                keywords.append(keyword.strip("(\"'"))

            # Return the Object as well
            if len(splited_texts) <= 2:
                continue
            keyword = splited_texts[2]
            if keyword:
                keywords.append(keyword.strip(" ()\"'"))
        return keywords

    def _retrieve(
        self,
        query_bundle: QueryBundle,
    ) -> List[NodeWithScore]:
        """获取响应的节点。"""
        node_visited = set()
        keywords = self._get_keywords(query_bundle.query_str)
        if self._verbose:
            print_text(f"Extracted keywords: {keywords}\n", color="green")
        rel_texts = []
        cur_rel_map = {}
        chunk_indices_count: Dict[str, int] = defaultdict(int)
        if self._retriever_mode != KGRetrieverMode.EMBEDDING:
            for keyword in keywords:
                subjs = {keyword}
                node_ids = self._index_struct.search_node_by_keyword(keyword)
                for node_id in node_ids[:GLOBAL_EXPLORE_NODE_LIMIT]:
                    if node_id in node_visited:
                        continue

                    if self._include_text:
                        chunk_indices_count[node_id] += 1

                    node_visited.add(node_id)
                    if self.use_global_node_triplets:
                        # Get nodes from keyword search, and add them to the subjs
                        # set. This helps introduce more global knowledge into the
                        # query. While it's more expensive, thus to be turned off
                        # by default, it can be useful for some applications.

                        # TODO: we should a keyword-node_id map in IndexStruct, so that
                        # node-keywords extraction with LLM will be called only once
                        # during indexing.
                        extended_subjs = self._get_keywords(
                            self._docstore.get_node(node_id).get_content(
                                metadata_mode=MetadataMode.LLM
                            )
                        )
                        subjs.update(extended_subjs)

                rel_map = self._graph_store.get_rel_map(
                    list(subjs), self.graph_store_query_depth
                )

                logger.debug(f"rel_map: {rel_map}")

                if not rel_map:
                    continue
                rel_texts.extend(
                    [
                        str(rel_obj)
                        for rel_objs in rel_map.values()
                        for rel_obj in rel_objs
                    ]
                )
                cur_rel_map.update(rel_map)

        if (
            self._retriever_mode != KGRetrieverMode.KEYWORD
            and len(self._index_struct.embedding_dict) > 0
        ):
            query_embedding = self._embed_model.get_text_embedding(
                query_bundle.query_str
            )
            all_rel_texts = list(self._index_struct.embedding_dict.keys())

            rel_text_embeddings = [
                self._index_struct.embedding_dict[_id] for _id in all_rel_texts
            ]
            similarities, top_rel_texts = get_top_k_embeddings(
                query_embedding,
                rel_text_embeddings,
                similarity_top_k=self.similarity_top_k,
                embedding_ids=all_rel_texts,
            )
            logger.debug(
                f"Found the following rel_texts+query similarites: {similarities!s}"
            )
            logger.debug(f"Found the following top_k rel_texts: {rel_texts!s}")
            rel_texts.extend(top_rel_texts)

        elif len(self._index_struct.embedding_dict) == 0:
            logger.warning(
                "Index was not constructed with embeddings, skipping embedding usage..."
            )

        # remove any duplicates from keyword + embedding queries
        if self._retriever_mode == KGRetrieverMode.HYBRID:
            rel_texts = list(set(rel_texts))

            # remove shorter rel_texts that are substrings of longer rel_texts
            rel_texts.sort(key=len, reverse=True)
            for i in range(len(rel_texts)):
                for j in range(i + 1, len(rel_texts)):
                    if rel_texts[j] in rel_texts[i]:
                        rel_texts[j] = ""
            rel_texts = [rel_text for rel_text in rel_texts if rel_text != ""]

            # truncate rel_texts
            rel_texts = rel_texts[: self.max_knowledge_sequence]

        # When include_text = True just get the actual content of all the nodes
        # (Nodes with actual keyword match, Nodes which are found from the depth search and Nodes founnd from top_k similarity)
        if self._include_text:
            keywords = self._extract_rel_text_keywords(
                rel_texts
            )  # rel_texts will have all the Triplets retrieved with respect to the Query
            nested_node_ids = [
                self._index_struct.search_node_by_keyword(keyword)
                for keyword in keywords
            ]
            node_ids = [_id for ids in nested_node_ids for _id in ids]
            for node_id in node_ids:
                chunk_indices_count[node_id] += 1

        sorted_chunk_indices = sorted(
            chunk_indices_count.keys(),
            key=lambda x: chunk_indices_count[x],
            reverse=True,
        )
        sorted_chunk_indices = sorted_chunk_indices[: self.num_chunks_per_query]
        sorted_nodes = self._docstore.get_nodes(sorted_chunk_indices)

        # TMP/TODO: also filter rel_texts as nodes until we figure out better
        # abstraction
        # TODO(suo): figure out what this does
        # rel_text_nodes = [Node(text=rel_text) for rel_text in rel_texts]
        # for node_processor in self._node_postprocessors:
        #     rel_text_nodes = node_processor.postprocess_nodes(rel_text_nodes)
        # rel_texts = [node.get_content() for node in rel_text_nodes]

        sorted_nodes_with_scores = []
        for chunk_idx, node in zip(sorted_chunk_indices, sorted_nodes):
            # nodes are found with keyword mapping, give high conf to avoid cutoff
            sorted_nodes_with_scores.append(
                NodeWithScore(node=node, score=DEFAULT_NODE_SCORE)
            )
            logger.info(
                f"> Querying with idx: {chunk_idx}: "
                f"{truncate_text(node.get_content(), 80)}"
            )
        # if no relationship is found, return the nodes found by keywords
        if not rel_texts:
            logger.info("> No relationships found, returning nodes found by keywords.")
            if len(sorted_nodes_with_scores) == 0:
                logger.info("> No nodes found by keywords, returning empty response.")
                return [
                    NodeWithScore(
                        node=TextNode(text="No relationships found."), score=1.0
                    )
                ]
            # In else case the sorted_nodes_with_scores is not empty
            # thus returning the nodes found by keywords
            return sorted_nodes_with_scores

        # add relationships as Node
        # TODO: make initial text customizable
        rel_initial_text = (
            f"The following are knowledge sequence in max depth"
            f" {self.graph_store_query_depth} "
            f"in the form of directed graph like:\n"
            f"`subject -[predicate]->, object, <-[predicate_next_hop]-,"
            f" object_next_hop ...`"
        )
        rel_info = [rel_initial_text, *rel_texts]
        rel_node_info = {
            "kg_rel_texts": rel_texts,
            "kg_rel_map": cur_rel_map,
        }
        if self._graph_schema != "":
            rel_node_info["kg_schema"] = {"schema": self._graph_schema}
        rel_info_text = "\n".join(
            [
                str(item)
                for sublist in rel_info
                for item in (sublist if isinstance(sublist, list) else [sublist])
            ]
        )
        if self._verbose:
            print_text(f"KG context:\n{rel_info_text}\n", color="blue")
        rel_text_node = TextNode(
            text=rel_info_text,
            metadata=rel_node_info,
            excluded_embed_metadata_keys=["kg_rel_map", "kg_rel_texts"],
            excluded_llm_metadata_keys=["kg_rel_map", "kg_rel_texts"],
        )
        # this node is constructed from rel_texts, give high confidence to avoid cutoff
        sorted_nodes_with_scores.append(
            NodeWithScore(node=rel_text_node, score=DEFAULT_NODE_SCORE)
        )

        return sorted_nodes_with_scores

    def _get_metadata_for_response(
        self, nodes: List[BaseNode]
    ) -> Optional[Dict[str, Any]]:
        """获取响应的元数据。"""
        for node in nodes:
            if node.metadata is None or "kg_rel_map" not in node.metadata:
                continue
            return node.metadata
        raise ValueError("kg_rel_map must be found in at least one Node.")

KnowledgeGraphRAGRetriever #

Bases: BaseRetriever

知识图谱RAG检索器。

执行对知识图谱进行子图RAG。

Parameters:

Name Type Description Default
entity_extract_template(可选[BasePromptTemplate]):查询关键实体提取提示(参见:

ref:Prompt-Templates)。

required
synonym_expand_template(可选[QueryKeywordExpandPrompt]):查询关键实体扩展提示(参见:

ref:Prompt-Templates)。

required
Source code in llama_index/core/indices/knowledge_graph/retrievers.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
class KnowledgeGraphRAGRetriever(BaseRetriever):
    """知识图谱RAG检索器。

执行对知识图谱进行子图RAG。

Args:
    service_context(可选[ServiceContext]):要使用的服务上下文。
    storage_context(可选[StorageContext]):要使用的存储上下文。
    entity_extract_fn(可选[Callable]):用于提取实体的函数。
    entity_extract_template(可选[BasePromptTemplate]):查询关键实体提取提示(参见::ref:`Prompt-Templates`)。
    entity_extract_policy(可选[str]):要使用的实体提取策略。
        默认值:"union"
        可能的取值:"union","intersection"
    synonym_expand_fn(可选[Callable]):用于扩展同义词的函数。
    synonym_expand_template(可选[QueryKeywordExpandPrompt]):查询关键实体扩展提示(参见::ref:`Prompt-Templates`)。
    synonym_expand_policy(可选[str]):要使用的同义词扩展策略。
        默认值:"union"
        可能的取值:"union","intersection"
    max_entities(int):要提取的实体的最大数量。
        默认值:5
    max_synonyms(int):要扩展的每个实体的最大同义词数量。
        默认值:5
    retriever_mode(可选[str]):要使用的检索器模式。
        默认值:"keyword"
        可能的取值:"keyword","embedding","keyword_embedding"
    with_nl2graphquery(bool):是否在上下文中结合NL2GraphQuery。
        默认值:False
    graph_traversal_depth(int):图遍历的深度。
        默认值:2
    max_knowledge_sequence(int):要包含在响应中的知识序列的最大数量。默认情况下为30。
    verbose(bool):是否打印调试信息。"""

    def __init__(
        self,
        storage_context: Optional[StorageContext] = None,
        llm: Optional[LLM] = None,
        entity_extract_fn: Optional[Callable] = None,
        entity_extract_template: Optional[BasePromptTemplate] = None,
        entity_extract_policy: Optional[str] = "union",
        synonym_expand_fn: Optional[Callable] = None,
        synonym_expand_template: Optional[BasePromptTemplate] = None,
        synonym_expand_policy: Optional[str] = "union",
        max_entities: int = 5,
        max_synonyms: int = 5,
        retriever_mode: Optional[str] = "keyword",
        with_nl2graphquery: bool = False,
        graph_traversal_depth: int = 2,
        max_knowledge_sequence: int = REL_TEXT_LIMIT,
        verbose: bool = False,
        callback_manager: Optional[CallbackManager] = None,
        # deprecated
        service_context: Optional[ServiceContext] = None,
        **kwargs: Any,
    ) -> None:
        """初始化检索器。"""
        # Ensure that we have a graph store
        assert storage_context is not None, "Must provide a storage context."
        assert (
            storage_context.graph_store is not None
        ), "Must provide a graph store in the storage context."
        self._storage_context = storage_context
        self._graph_store = storage_context.graph_store

        self._llm = llm or llm_from_settings_or_context(Settings, service_context)

        self._entity_extract_fn = entity_extract_fn
        self._entity_extract_template = (
            entity_extract_template or DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE
        )
        self._entity_extract_policy = entity_extract_policy

        self._synonym_expand_fn = synonym_expand_fn
        self._synonym_expand_template = (
            synonym_expand_template or DEFAULT_SYNONYM_EXPAND_PROMPT
        )
        self._synonym_expand_policy = synonym_expand_policy

        self._max_entities = max_entities
        self._max_synonyms = max_synonyms
        self._retriever_mode = retriever_mode
        self._with_nl2graphquery = with_nl2graphquery
        if self._with_nl2graphquery:
            from llama_index.core.query_engine.knowledge_graph_query_engine import (
                KnowledgeGraphQueryEngine,
            )

            graph_query_synthesis_prompt = kwargs.get(
                "graph_query_synthesis_prompt",
                None,
            )
            if graph_query_synthesis_prompt is not None:
                del kwargs["graph_query_synthesis_prompt"]

            graph_response_answer_prompt = kwargs.get(
                "graph_response_answer_prompt",
                None,
            )
            if graph_response_answer_prompt is not None:
                del kwargs["graph_response_answer_prompt"]

            refresh_schema = kwargs.get("refresh_schema", False)
            response_synthesizer = kwargs.get("response_synthesizer", None)
            self._kg_query_engine = KnowledgeGraphQueryEngine(
                llm=self._llm,
                storage_context=self._storage_context,
                graph_query_synthesis_prompt=graph_query_synthesis_prompt,
                graph_response_answer_prompt=graph_response_answer_prompt,
                refresh_schema=refresh_schema,
                verbose=verbose,
                response_synthesizer=response_synthesizer,
                service_context=service_context,
                **kwargs,
            )

        self._graph_traversal_depth = graph_traversal_depth
        self._max_knowledge_sequence = max_knowledge_sequence
        self._verbose = verbose
        refresh_schema = kwargs.get("refresh_schema", False)
        try:
            self._graph_schema = self._graph_store.get_schema(refresh=refresh_schema)
        except NotImplementedError:
            self._graph_schema = ""
        except Exception as e:
            logger.warning(f"Failed to get graph schema: {e}")
            self._graph_schema = ""

        super().__init__(
            callback_manager=callback_manager
            or callback_manager_from_settings_or_context(Settings, service_context)
        )

    def _process_entities(
        self,
        query_str: str,
        handle_fn: Optional[Callable],
        handle_llm_prompt_template: Optional[BasePromptTemplate],
        cross_handle_policy: Optional[str] = "union",
        max_items: Optional[int] = 5,
        result_start_token: str = "KEYWORDS:",
    ) -> List[str]:
        """从查询字符串中获取实体。"""
        assert cross_handle_policy in [
            "union",
            "intersection",
        ], "Invalid entity extraction policy."
        if cross_handle_policy == "intersection":
            assert all(
                [
                    handle_fn is not None,
                    handle_llm_prompt_template is not None,
                ]
            ), "Must provide entity extract function and template."
        assert any(
            [
                handle_fn is not None,
                handle_llm_prompt_template is not None,
            ]
        ), "Must provide either entity extract function or template."
        enitities_fn: List[str] = []
        enitities_llm: Set[str] = set()

        if handle_fn is not None:
            enitities_fn = handle_fn(query_str)
        if handle_llm_prompt_template is not None:
            response = self._llm.predict(
                handle_llm_prompt_template,
                max_keywords=max_items,
                question=query_str,
            )
            enitities_llm = extract_keywords_given_response(
                response, start_token=result_start_token, lowercase=False
            )
        if cross_handle_policy == "union":
            entities = list(set(enitities_fn) | enitities_llm)
        elif cross_handle_policy == "intersection":
            entities = list(set(enitities_fn).intersection(set(enitities_llm)))
        if self._verbose:
            print_text(f"Entities processed: {entities}\n", color="green")

        return entities

    async def _aprocess_entities(
        self,
        query_str: str,
        handle_fn: Optional[Callable],
        handle_llm_prompt_template: Optional[BasePromptTemplate],
        cross_handle_policy: Optional[str] = "union",
        max_items: Optional[int] = 5,
        result_start_token: str = "KEYWORDS:",
    ) -> List[str]:
        """从查询字符串中获取实体。"""
        assert cross_handle_policy in [
            "union",
            "intersection",
        ], "Invalid entity extraction policy."
        if cross_handle_policy == "intersection":
            assert all(
                [
                    handle_fn is not None,
                    handle_llm_prompt_template is not None,
                ]
            ), "Must provide entity extract function and template."
        assert any(
            [
                handle_fn is not None,
                handle_llm_prompt_template is not None,
            ]
        ), "Must provide either entity extract function or template."
        enitities_fn: List[str] = []
        enitities_llm: Set[str] = set()

        if handle_fn is not None:
            enitities_fn = handle_fn(query_str)
        if handle_llm_prompt_template is not None:
            response = await self._llm.apredict(
                handle_llm_prompt_template,
                max_keywords=max_items,
                question=query_str,
            )
            enitities_llm = extract_keywords_given_response(
                response, start_token=result_start_token, lowercase=False
            )
        if cross_handle_policy == "union":
            entities = list(set(enitities_fn) | enitities_llm)
        elif cross_handle_policy == "intersection":
            entities = list(set(enitities_fn).intersection(set(enitities_llm)))
        if self._verbose:
            print_text(f"Entities processed: {entities}\n", color="green")

        return entities

    def _get_entities(self, query_str: str) -> List[str]:
        """从查询字符串中获取实体。"""
        entities = self._process_entities(
            query_str,
            self._entity_extract_fn,
            self._entity_extract_template,
            self._entity_extract_policy,
            self._max_entities,
            "KEYWORDS:",
        )
        expanded_entities = self._expand_synonyms(entities)
        return list(set(entities) | set(expanded_entities))

    async def _aget_entities(self, query_str: str) -> List[str]:
        """从查询字符串中获取实体。"""
        entities = await self._aprocess_entities(
            query_str,
            self._entity_extract_fn,
            self._entity_extract_template,
            self._entity_extract_policy,
            self._max_entities,
            "KEYWORDS:",
        )
        expanded_entities = await self._aexpand_synonyms(entities)
        return list(set(entities) | set(expanded_entities))

    def _expand_synonyms(self, keywords: List[str]) -> List[str]:
        """扩展关键词的同义词或类似表达。"""
        return self._process_entities(
            str(keywords),
            self._synonym_expand_fn,
            self._synonym_expand_template,
            self._synonym_expand_policy,
            self._max_synonyms,
            "SYNONYMS:",
        )

    async def _aexpand_synonyms(self, keywords: List[str]) -> List[str]:
        """扩展关键词的同义词或类似表达。"""
        return await self._aprocess_entities(
            str(keywords),
            self._synonym_expand_fn,
            self._synonym_expand_template,
            self._synonym_expand_policy,
            self._max_synonyms,
            "SYNONYMS:",
        )

    def _get_knowledge_sequence(
        self, entities: List[str]
    ) -> Tuple[List[str], Optional[Dict[Any, Any]]]:
        """从实体中获取知识序列。"""
        # Get SubGraph from Graph Store as Knowledge Sequence
        rel_map: Optional[Dict] = self._graph_store.get_rel_map(
            entities, self._graph_traversal_depth, limit=self._max_knowledge_sequence
        )
        logger.debug(f"rel_map: {rel_map}")

        # Build Knowledge Sequence
        knowledge_sequence = []
        if rel_map:
            knowledge_sequence.extend(
                [str(rel_obj) for rel_objs in rel_map.values() for rel_obj in rel_objs]
            )
        else:
            logger.info("> No knowledge sequence extracted from entities.")
            return [], None

        return knowledge_sequence, rel_map

    async def _aget_knowledge_sequence(
        self, entities: List[str]
    ) -> Tuple[List[str], Optional[Dict[Any, Any]]]:
        """从实体中获取知识序列。"""
        # Get SubGraph from Graph Store as Knowledge Sequence
        # TBD: async in graph store
        rel_map: Optional[Dict] = self._graph_store.get_rel_map(
            entities, self._graph_traversal_depth, limit=self._max_knowledge_sequence
        )
        logger.debug(f"rel_map from GraphStore:\n{rel_map}")

        # Build Knowledge Sequence
        knowledge_sequence = []
        if rel_map:
            knowledge_sequence.extend(
                [str(rel_obj) for rel_objs in rel_map.values() for rel_obj in rel_objs]
            )
        else:
            logger.info("> No knowledge sequence extracted from entities.")
            return [], None

        return knowledge_sequence, rel_map

    def _build_nodes(
        self, knowledge_sequence: List[str], rel_map: Optional[Dict[Any, Any]] = None
    ) -> List[NodeWithScore]:
        """从知识序列构建节点。"""
        if len(knowledge_sequence) == 0:
            logger.info("> No knowledge sequence extracted from entities.")
            return []
        _new_line_char = "\n"
        context_string = (
            f"The following are knowledge sequence in max depth"
            f" {self._graph_traversal_depth} "
            f"in the form of directed graph like:\n"
            f"`subject -[predicate]->, object, <-[predicate_next_hop]-,"
            f" object_next_hop ...`"
            f" extracted based on key entities as subject:\n"
            f"{_new_line_char.join(knowledge_sequence)}"
        )
        if self._verbose:
            print_text(f"Graph RAG context:\n{context_string}\n", color="blue")

        rel_node_info = {
            "kg_rel_map": rel_map,
            "kg_rel_text": knowledge_sequence,
        }
        metadata_keys = ["kg_rel_map", "kg_rel_text"]
        if self._graph_schema != "":
            rel_node_info["kg_schema"] = {"schema": self._graph_schema}
            metadata_keys.append("kg_schema")
        node = NodeWithScore(
            node=TextNode(
                text=context_string,
                score=1.0,
                metadata=rel_node_info,
                excluded_embed_metadata_keys=metadata_keys,
                excluded_llm_metadata_keys=metadata_keys,
            )
        )
        return [node]

    def _retrieve_keyword(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
        """以关键字模式检索。"""
        if self._retriever_mode not in ["keyword", "keyword_embedding"]:
            return []
        # Get entities
        entities = self._get_entities(query_bundle.query_str)
        # Before we enable embedding/semantic search, we need to make sure
        # we don't miss any entities that's synoynm of the entities we extracted
        # in string matching based retrieval in following steps, thus we expand
        # synonyms here.
        if len(entities) == 0:
            logger.info("> No entities extracted from query string.")
            return []

        # Get SubGraph from Graph Store as Knowledge Sequence
        knowledge_sequence, rel_map = self._get_knowledge_sequence(entities)

        return self._build_nodes(knowledge_sequence, rel_map)

    async def _aretrieve_keyword(
        self, query_bundle: QueryBundle
    ) -> List[NodeWithScore]:
        """以关键字模式检索。"""
        if self._retriever_mode not in ["keyword", "keyword_embedding"]:
            return []
        # Get entities
        entities = await self._aget_entities(query_bundle.query_str)
        # Before we enable embedding/semantic search, we need to make sure
        # we don't miss any entities that's synoynm of the entities we extracted
        # in string matching based retrieval in following steps, thus we expand
        # synonyms here.
        if len(entities) == 0:
            logger.info("> No entities extracted from query string.")
            return []

        # Get SubGraph from Graph Store as Knowledge Sequence
        knowledge_sequence, rel_map = await self._aget_knowledge_sequence(entities)

        return self._build_nodes(knowledge_sequence, rel_map)

    def _retrieve_embedding(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
        """以嵌入模式检索。"""
        if self._retriever_mode not in ["embedding", "keyword_embedding"]:
            return []
        # TBD: will implement this later with vector store.
        raise NotImplementedError

    async def _aretrieve_embedding(
        self, query_bundle: QueryBundle
    ) -> List[NodeWithScore]:
        """以嵌入模式检索。"""
        if self._retriever_mode not in ["embedding", "keyword_embedding"]:
            return []
        # TBD: will implement this later with vector store.
        raise NotImplementedError

    def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
        """为响应构建节点。"""
        nodes: List[NodeWithScore] = []
        if self._with_nl2graphquery:
            try:
                nodes_nl2graphquery = self._kg_query_engine._retrieve(query_bundle)
                nodes.extend(nodes_nl2graphquery)
            except Exception as e:
                logger.warning(f"Error in retrieving from nl2graphquery: {e}")

        nodes.extend(self._retrieve_keyword(query_bundle))
        nodes.extend(self._retrieve_embedding(query_bundle))

        return nodes

    async def _aretrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
        """为响应构建节点。"""
        nodes: List[NodeWithScore] = []
        if self._with_nl2graphquery:
            try:
                nodes_nl2graphquery = await self._kg_query_engine._aretrieve(
                    query_bundle
                )
                nodes.extend(nodes_nl2graphquery)
            except Exception as e:
                logger.warning(f"Error in retrieving from nl2graphquery: {e}")

        nodes.extend(await self._aretrieve_keyword(query_bundle))
        nodes.extend(await self._aretrieve_embedding(query_bundle))

        return nodes