Skip to content

Tree

TreeAllLeafRetriever #

Bases: BaseRetriever

GPT所有叶子检索器。

该类从叶子节点构建一个特定于查询的树来返回响应。 使用此查询模式意味着在初始化时不需要构建树索引,因为我们为每个查询重新构建树。

Parameters:

Name Type Description Default
text_qa_template(可选[BasePromptTemplate]):问题-答案提示(参见:

ref:Prompt-Templates)。

required
Source code in llama_index/core/indices/tree/all_leaf_retriever.py
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
class TreeAllLeafRetriever(BaseRetriever):
    """GPT所有叶子检索器。

    该类从叶子节点构建一个特定于查询的树来返回响应。
    使用此查询模式意味着在初始化时不需要构建树索引,因为我们为每个查询重新构建树。

    Args:
        text_qa_template(可选[BasePromptTemplate]):问题-答案提示(参见::ref:`Prompt-Templates`)。"""

    def __init__(
        self,
        index: TreeIndex,
        callback_manager: Optional[CallbackManager] = None,
        object_map: Optional[dict] = None,
        verbose: bool = False,
        **kwargs: Any,
    ) -> None:
        self._index = index
        self._index_struct = index.index_struct
        self._docstore = index.docstore
        super().__init__(
            callback_manager=callback_manager, object_map=object_map, verbose=verbose
        )

    def _retrieve(
        self,
        query_bundle: QueryBundle,
    ) -> List[NodeWithScore]:
        """获取响应的节点。"""
        logger.info(f"> Starting query: {query_bundle.query_str}")
        index_struct = cast(IndexGraph, self._index_struct)
        all_nodes = self._docstore.get_node_dict(index_struct.all_nodes)
        sorted_node_list = get_sorted_node_list(all_nodes)
        return [NodeWithScore(node=node) for node in sorted_node_list]

TreeSelectLeafEmbeddingRetriever #

Bases: TreeSelectLeafRetriever

树选择叶嵌入检索器。

该类使用查询和节点文本之间的嵌入相似性遍历索引图。

Parameters:

Name Type Description Default
query_template Optional[BasePromptTemplate]

树选择查询提示 (参见::ref:Prompt-Templates).

None
query_template_multiple Optional[BasePromptTemplate]

树选择 查询提示 (多个) (参见::ref:Prompt-Templates).

None
text_qa_template Optional[BasePromptTemplate]

问答提示 (参见::ref:Prompt-Templates).

None
refine_template Optional[BasePromptTemplate]

优化提示 (参见::ref:Prompt-Templates).

None
child_branch_factor int

每个级别考虑的子节点数。 如果child_branch_factor为1,则查询将仅选择一个子节点 用于遍历任何给定的父节点。 如果child_branch_factor为2,则查询将选择两个子节点。

1
embed_model Optional[BaseEmbedding]

用于嵌入相似性的嵌入模型。

None
Source code in llama_index/core/indices/tree/select_leaf_embedding_retriever.py
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
class TreeSelectLeafEmbeddingRetriever(TreeSelectLeafRetriever):
    """树选择叶嵌入检索器。

    该类使用查询和节点文本之间的嵌入相似性遍历索引图。

    Args:
        query_template (Optional[BasePromptTemplate]): 树选择查询提示
            (参见::ref:`Prompt-Templates`).
        query_template_multiple (Optional[BasePromptTemplate]): 树选择
            查询提示 (多个)
            (参见::ref:`Prompt-Templates`).
        text_qa_template (Optional[BasePromptTemplate]): 问答提示
            (参见::ref:`Prompt-Templates`).
        refine_template (Optional[BasePromptTemplate]): 优化提示
            (参见::ref:`Prompt-Templates`).
        child_branch_factor (int): 每个级别考虑的子节点数。
            如果child_branch_factor为1,则查询将仅选择一个子节点
            用于遍历任何给定的父节点。
            如果child_branch_factor为2,则查询将选择两个子节点。
        embed_model (Optional[BaseEmbedding]): 用于嵌入相似性的嵌入模型。

"""

    def __init__(
        self,
        index: TreeIndex,
        embed_model: Optional[BaseEmbedding] = None,
        query_template: Optional[BasePromptTemplate] = None,
        text_qa_template: Optional[BasePromptTemplate] = None,
        refine_template: Optional[BasePromptTemplate] = None,
        query_template_multiple: Optional[BasePromptTemplate] = None,
        child_branch_factor: int = 1,
        verbose: bool = False,
        callback_manager: Optional[CallbackManager] = None,
        object_map: Optional[dict] = None,
        **kwargs: Any,
    ):
        super().__init__(
            index,
            query_template=query_template,
            text_qa_template=text_qa_template,
            refine_template=refine_template,
            query_template_multiple=query_template_multiple,
            child_branch_factor=child_branch_factor,
            verbose=verbose,
            callback_manager=callback_manager,
            object_map=object_map,
            **kwargs,
        )
        self._embed_model = embed_model or embed_model_from_settings_or_context(
            Settings, index.service_context
        )

    def _query_level(
        self,
        cur_node_ids: Dict[int, str],
        query_bundle: QueryBundle,
        level: int = 0,
    ) -> str:
        """递归地回答一个查询。"""
        cur_nodes = {
            index: self._docstore.get_node(node_id)
            for index, node_id in cur_node_ids.items()
        }
        cur_node_list = get_sorted_node_list(cur_nodes)

        # Get the node with the highest similarity to the query
        selected_nodes, selected_indices = self._get_most_similar_nodes(
            cur_node_list, query_bundle
        )

        result_response = None
        for node, index in zip(selected_nodes, selected_indices):
            logger.debug(
                f">[Level {level}] Node [{index+1}] Summary text: "
                f"{' '.join(node.get_content().splitlines())}"
            )

            # Get the response for the selected node
            result_response = self._query_with_selected_node(
                node, query_bundle, level=level, prev_response=result_response
            )

        return cast(str, result_response)

    def _get_query_text_embedding_similarities(
        self, query_bundle: QueryBundle, nodes: List[BaseNode]
    ) -> List[float]:
        """获取查询文本嵌入的相似度。

缓存查询嵌入和节点文本嵌入。
"""
        if query_bundle.embedding is None:
            query_bundle.embedding = self._embed_model.get_agg_embedding_from_queries(
                query_bundle.embedding_strs
            )
        similarities = []
        for node in nodes:
            if node.embedding is None:
                node.embedding = self._embed_model.get_text_embedding(
                    node.get_content(metadata_mode=MetadataMode.EMBED)
                )

            similarity = self._embed_model.similarity(
                query_bundle.embedding, node.embedding
            )
            similarities.append(similarity)
        return similarities

    def _get_most_similar_nodes(
        self, nodes: List[BaseNode], query_bundle: QueryBundle
    ) -> Tuple[List[BaseNode], List[int]]:
        """获取与查询具有最高相似度的节点。"""
        similarities = self._get_query_text_embedding_similarities(query_bundle, nodes)

        selected_nodes: List[BaseNode] = []
        selected_indices: List[int] = []
        for node, _ in sorted(
            zip(nodes, similarities), key=lambda x: x[1], reverse=True
        ):
            if len(selected_nodes) < self.child_branch_factor:
                selected_nodes.append(node)
                selected_indices.append(nodes.index(node))
            else:
                break

        return selected_nodes, selected_indices

    def _select_nodes(
        self,
        cur_node_list: List[BaseNode],
        query_bundle: QueryBundle,
        level: int = 0,
    ) -> List[BaseNode]:
        selected_nodes, _ = self._get_most_similar_nodes(cur_node_list, query_bundle)
        return selected_nodes

TreeSelectLeafRetriever #

Bases: BaseRetriever

树选择叶子检索器。

该类遍历索引图并搜索可以最佳回答查询的叶节点。

Parameters:

Name Type Description Default
query_template Optional[BasePromptTemplate]

树选择查询提示(参见::ref:Prompt-Templates)。

None
query_template_multiple Optional[BasePromptTemplate]

树选择查询提示(多个)(参见::ref:Prompt-Templates)。

None
child_branch_factor int

每个级别要考虑的子节点数。 如果child_branch_factor为1,则查询将仅选择一个子节点来遍历任何给定的父节点。 如果child_branch_factor为2,则查询将选择两个子节点。

1
Source code in llama_index/core/indices/tree/select_leaf_retriever.py
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
class TreeSelectLeafRetriever(BaseRetriever):
    """树选择叶子检索器。

    该类遍历索引图并搜索可以最佳回答查询的叶节点。

    Args:
        query_template (Optional[BasePromptTemplate]): 树选择查询提示(参见::ref:`Prompt-Templates`)。
        query_template_multiple (Optional[BasePromptTemplate]): 树选择查询提示(多个)(参见::ref:`Prompt-Templates`)。
        child_branch_factor (int): 每个级别要考虑的子节点数。
            如果child_branch_factor为1,则查询将仅选择一个子节点来遍历任何给定的父节点。
            如果child_branch_factor为2,则查询将选择两个子节点。"""

    def __init__(
        self,
        index: TreeIndex,
        query_template: Optional[BasePromptTemplate] = None,
        text_qa_template: Optional[BasePromptTemplate] = None,
        refine_template: Optional[BasePromptTemplate] = None,
        query_template_multiple: Optional[BasePromptTemplate] = None,
        child_branch_factor: int = 1,
        verbose: bool = False,
        callback_manager: Optional[CallbackManager] = None,
        object_map: Optional[dict] = None,
        **kwargs: Any,
    ):
        self._index = index
        self._llm = index._llm
        self._index_struct = index.index_struct
        self._docstore = index.docstore
        self._service_context = index.service_context
        self._prompt_helper = Settings._prompt_helper or PromptHelper.from_llm_metadata(
            self._llm.metadata,
        )

        self._text_qa_template = text_qa_template or DEFAULT_TEXT_QA_PROMPT
        self._refine_template = refine_template or DEFAULT_REFINE_PROMPT_SEL
        self.query_template = query_template or DEFAULT_QUERY_PROMPT
        self.query_template_multiple = (
            query_template_multiple or DEFAULT_QUERY_PROMPT_MULTIPLE
        )
        self.child_branch_factor = child_branch_factor
        super().__init__(
            callback_manager=callback_manager
            or callback_manager_from_settings_or_context(
                Settings, index.service_context
            ),
            object_map=object_map,
            verbose=verbose,
        )

    def _query_with_selected_node(
        self,
        selected_node: BaseNode,
        query_bundle: QueryBundle,
        prev_response: Optional[str] = None,
        level: int = 0,
    ) -> str:
        """获取所选节点的响应。

如果不是叶节点,将递归调用子节点上的_query。
如果提供了prev_response,则将使用答案更新prev_response。
"""
        query_str = query_bundle.query_str

        if len(self._index_struct.get_children(selected_node)) == 0:
            response_builder = get_response_synthesizer(
                llm=self._llm,
                service_context=self._service_context,
                text_qa_template=self._text_qa_template,
                refine_template=self._refine_template,
                callback_manager=self.callback_manager,
            )
            # use response builder to get answer from node
            node_text = get_text_from_node(selected_node, level=level)
            cur_response = response_builder.get_response(
                query_str, [node_text], prev_response=prev_response
            )
            cur_response = cast(str, cur_response)
            logger.debug(f">[Level {level}] Current answer response: {cur_response} ")
        else:
            cur_response = self._query_level(
                self._index_struct.get_children(selected_node),
                query_bundle,
                level=level + 1,
            )

        if prev_response is None:
            return cur_response
        else:
            context_msg = selected_node.get_content(metadata_mode=MetadataMode.LLM)
            cur_response = self._llm.predict(
                self._refine_template,
                query_str=query_str,
                existing_answer=prev_response,
                context_msg=context_msg,
            )

            logger.debug(f">[Level {level}] Current refined response: {cur_response} ")
            return cur_response

    def _query_level(
        self,
        cur_node_ids: Dict[int, str],
        query_bundle: QueryBundle,
        level: int = 0,
    ) -> str:
        """递归地回答一个查询。"""
        query_str = query_bundle.query_str
        cur_nodes = {
            index: self._docstore.get_node(node_id)
            for index, node_id in cur_node_ids.items()
        }
        cur_node_list = get_sorted_node_list(cur_nodes)

        if len(cur_node_list) == 1:
            logger.debug(f">[Level {level}] Only one node left. Querying node.")
            return self._query_with_selected_node(
                cur_node_list[0], query_bundle, level=level
            )
        elif self.child_branch_factor == 1:
            query_template = self.query_template.partial_format(
                num_chunks=len(cur_node_list), query_str=query_str
            )
            text_splitter = self._prompt_helper.get_text_splitter_given_prompt(
                prompt=query_template,
                num_chunks=len(cur_node_list),
            )
            numbered_node_text = get_numbered_text_from_nodes(
                cur_node_list, text_splitter=text_splitter
            )

            response = self._llm.predict(
                query_template,
                context_list=numbered_node_text,
            )
        else:
            query_template_multiple = self.query_template_multiple.partial_format(
                num_chunks=len(cur_node_list),
                query_str=query_str,
                branching_factor=self.child_branch_factor,
            )

            text_splitter = self._prompt_helper.get_text_splitter_given_prompt(
                prompt=query_template_multiple,
                num_chunks=len(cur_node_list),
            )
            numbered_node_text = get_numbered_text_from_nodes(
                cur_node_list, text_splitter=text_splitter
            )

            response = self._llm.predict(
                query_template_multiple,
                context_list=numbered_node_text,
            )

        debug_str = f">[Level {level}] Current response: {response}"
        logger.debug(debug_str)
        if self._verbose:
            print_text(debug_str, end="\n")

        numbers = extract_numbers_given_response(response, n=self.child_branch_factor)
        if numbers is None:
            debug_str = (
                f">[Level {level}] Could not retrieve response - no numbers present"
            )
            logger.debug(debug_str)
            if self._verbose:
                print_text(debug_str, end="\n")
            # just join text from current nodes as response
            return response
        result_response = None
        for number_str in numbers:
            number = int(number_str)
            if number > len(cur_node_list):
                logger.debug(
                    f">[Level {level}] Invalid response: {response} - "
                    f"number {number} out of range"
                )
                return response

            # number is 1-indexed, so subtract 1
            selected_node = cur_node_list[number - 1]

            info_str = (
                f">[Level {level}] Selected node: "
                f"[{number}]/[{','.join([str(int(n)) for n in numbers])}]"
            )
            logger.info(info_str)
            if self._verbose:
                print_text(info_str, end="\n")
            debug_str = " ".join(
                selected_node.get_content(metadata_mode=MetadataMode.LLM).splitlines()
            )
            full_debug_str = (
                f">[Level {level}] Node "
                f"[{number}] Summary text: "
                f"{ selected_node.get_content(metadata_mode=MetadataMode.LLM) }"
            )
            logger.debug(full_debug_str)
            if self._verbose:
                print_text(full_debug_str, end="\n")
            result_response = self._query_with_selected_node(
                selected_node,
                query_bundle,
                prev_response=result_response,
                level=level,
            )
        # result_response should not be None
        return cast(str, result_response)

    def _query(self, query_bundle: QueryBundle) -> Response:
        """回答一个查询。"""
        # NOTE: this overrides the _query method in the base class
        info_str = f"> Starting query: {query_bundle.query_str}"
        logger.info(info_str)
        if self._verbose:
            print_text(info_str, end="\n")
        response_str = self._query_level(
            self._index_struct.root_nodes,
            query_bundle,
            level=0,
        ).strip()
        # TODO: fix source nodes
        return Response(response_str, source_nodes=[])

    def _select_nodes(
        self,
        cur_node_list: List[BaseNode],
        query_bundle: QueryBundle,
        level: int = 0,
    ) -> List[BaseNode]:
        query_str = query_bundle.query_str

        if self.child_branch_factor == 1:
            query_template = self.query_template.partial_format(
                num_chunks=len(cur_node_list), query_str=query_str
            )
            text_splitter = self._prompt_helper.get_text_splitter_given_prompt(
                prompt=query_template,
                num_chunks=len(cur_node_list),
            )
            numbered_node_text = get_numbered_text_from_nodes(
                cur_node_list, text_splitter=text_splitter
            )

            response = self._llm.predict(
                query_template,
                context_list=numbered_node_text,
            )
        else:
            query_template_multiple = self.query_template_multiple.partial_format(
                num_chunks=len(cur_node_list),
                query_str=query_str,
                branching_factor=self.child_branch_factor,
            )

            text_splitter = self._prompt_helper.get_text_splitter_given_prompt(
                prompt=query_template_multiple,
                num_chunks=len(cur_node_list),
            )
            numbered_node_text = get_numbered_text_from_nodes(
                cur_node_list, text_splitter=text_splitter
            )

            response = self._llm.predict(
                query_template_multiple,
                context_list=numbered_node_text,
            )

        debug_str = f">[Level {level}] Current response: {response}"
        logger.debug(debug_str)
        if self._verbose:
            print_text(debug_str, end="\n")

        numbers = extract_numbers_given_response(response, n=self.child_branch_factor)
        if numbers is None:
            debug_str = (
                f">[Level {level}] Could not retrieve response - no numbers present"
            )
            logger.debug(debug_str)
            if self._verbose:
                print_text(debug_str, end="\n")
            # just join text from current nodes as response
            return []

        selected_nodes = []
        for number_str in numbers:
            number = int(number_str)
            if number > len(cur_node_list):
                logger.debug(
                    f">[Level {level}] Invalid response: {response} - "
                    f"number {number} out of range"
                )
                continue

            # number is 1-indexed, so subtract 1
            selected_node = cur_node_list[number - 1]

            info_str = (
                f">[Level {level}] Selected node: "
                f"[{number}]/[{','.join([str(int(n)) for n in numbers])}]"
            )
            logger.info(info_str)
            if self._verbose:
                print_text(info_str, end="\n")
            debug_str = " ".join(
                selected_node.get_content(metadata_mode=MetadataMode.LLM).splitlines()
            )
            full_debug_str = (
                f">[Level {level}] Node "
                f"[{number}] Summary text: "
                f"{ selected_node.get_content(metadata_mode=MetadataMode.LLM) }"
            )
            logger.debug(full_debug_str)
            if self._verbose:
                print_text(full_debug_str, end="\n")
            selected_nodes.append(selected_node)

        return selected_nodes

    def _retrieve_level(
        self,
        cur_node_ids: Dict[int, str],
        query_bundle: QueryBundle,
        level: int = 0,
    ) -> List[BaseNode]:
        """递归地回答一个查询。"""
        cur_nodes = {
            index: self._docstore.get_node(node_id)
            for index, node_id in cur_node_ids.items()
        }
        cur_node_list = get_sorted_node_list(cur_nodes)

        if len(cur_node_list) > self.child_branch_factor:
            selected_nodes = self._select_nodes(
                cur_node_list,
                query_bundle,
                level=level,
            )
        else:
            selected_nodes = cur_node_list

        children_nodes = {}
        for node in selected_nodes:
            node_dict = self._index_struct.get_children(node)
            children_nodes.update(node_dict)

        if len(children_nodes) == 0:
            # NOTE: leaf level
            return selected_nodes
        else:
            return self._retrieve_level(children_nodes, query_bundle, level + 1)

    def _retrieve(
        self,
        query_bundle: QueryBundle,
    ) -> List[NodeWithScore]:
        """获取响应的节点。"""
        nodes = self._retrieve_level(
            self._index_struct.root_nodes,
            query_bundle,
            level=0,
        )
        return [NodeWithScore(node=node) for node in nodes]

TreeRootRetriever #

Bases: BaseRetriever

树根检索器。

该类直接从根节点检索答案。

与GPTTreeIndexLeafQuery不同,该类假设图已经存储了答案(因为它是用查询字符串构建的),因此它不会尝试解析图中的信息以合成答案。

Source code in llama_index/core/indices/tree/tree_root_retriever.py
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
class TreeRootRetriever(BaseRetriever):
    """树根检索器。

    该类直接从根节点检索答案。

    与GPTTreeIndexLeafQuery不同,该类假设图已经存储了答案(因为它是用查询字符串构建的),因此它不会尝试解析图中的信息以合成答案。"""

    def __init__(
        self,
        index: TreeIndex,
        callback_manager: Optional[CallbackManager] = None,
        object_map: Optional[dict] = None,
        verbose: bool = False,
        **kwargs: Any,
    ) -> None:
        self._index = index
        self._index_struct = index.index_struct
        self._docstore = index.docstore
        super().__init__(
            callback_manager=callback_manager, object_map=object_map, verbose=verbose
        )

    def _retrieve(
        self,
        query_bundle: QueryBundle,
    ) -> List[NodeWithScore]:
        """获取响应的节点。"""
        logger.info(f"> Starting query: {query_bundle.query_str}")
        root_nodes = self._docstore.get_node_dict(self._index_struct.root_nodes)
        sorted_nodes = get_sorted_node_list(root_nodes)
        return [NodeWithScore(node=node) for node in sorted_nodes]