72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863 | class Neo4jPGStore(PropertyGraphStore):
r"""```python
# Neo4j属性图存储。
# 该类实现了一个Neo4j属性图存储。
# 如果您使用的是本地的Neo4j而不是aura,这里有一个有用的命令用于启动docker容器:
# ```bash
# docker run \
# -p 7474:7474 -p 7687:7687 \
# -v $PWD/data:/data -v $PWD/plugins:/plugins \
# --name neo4j-apoc \
# -e NEO4J_apoc_export_file_enabled=true \
# -e NEO4J_apoc_import_file_enabled=true \
# -e NEO4J_apoc_import_file_use__neo4j__config=true \
# -e NEO4JLABS_PLUGINS=\\[\"apoc\"\\] \
# neo4j:latest
# ```
# Args:
# username (str): Neo4j数据库的用户名。
# password (str): Neo4j数据库的密码。
# url (str): Neo4j数据库的URL。
# database (Optional[str]): 要连接的数据库的名称。默认为"neo4j"。
# 示例:
# `pip install llama-index-graph-stores-neo4j`
# ```python
# from llama_index.core.indices.property_graph import PropertyGraphIndex
# from llama_index.graph_stores.neo4j import Neo4jLPGStore
# # 创建一个Neo4jLPGStore实例
# graph_store = Neo4jLPGStore(
# username="neo4j",
# password="neo4j",
# url="bolt://localhost:7687",
# database="neo4j"
# )
# # 创建索引
# index = PropertyGraphIndex.from_documents(
# documents,
# property_graph_store=graph_store,
# )
# ```
```"""
supports_structured_queries: bool = True
supports_vector_queries: bool = True
text_to_cypher_template: PromptTemplate = DEFAULT_CYPHER_TEMPALTE
def __init__(
self,
username: str,
password: str,
url: str,
database: Optional[str] = "neo4j",
refresh_schema: bool = True,
sanitize_query_output: bool = True,
enhanced_schema: bool = False,
**neo4j_kwargs: Any,
) -> None:
self.sanitize_query_output = sanitize_query_output
self.enhcnaced_schema = enhanced_schema
self._driver = neo4j.GraphDatabase.driver(
url, auth=(username, password), **neo4j_kwargs
)
self._async_driver = neo4j.AsyncGraphDatabase.driver(
url,
auth=(username, password),
**neo4j_kwargs,
)
self._database = database
self.structured_schema = {}
if refresh_schema:
self.refresh_schema()
@property
def client(self):
return self._driver
def refresh_schema(self) -> None:
"""刷新模式。"""
node_query_results = self.structured_query(
node_properties_query,
param_map={"EXCLUDED_LABELS": [*EXCLUDED_LABELS, BASE_ENTITY_LABEL]},
)
node_properties = (
[el["output"] for el in node_query_results] if node_query_results else []
)
rels_query_result = self.structured_query(
rel_properties_query, param_map={"EXCLUDED_LABELS": EXCLUDED_RELS}
)
rel_properties = (
[el["output"] for el in rels_query_result] if rels_query_result else []
)
rel_objs_query_result = self.structured_query(
rel_query,
param_map={"EXCLUDED_LABELS": [*EXCLUDED_LABELS, BASE_ENTITY_LABEL]},
)
relationships = (
[el["output"] for el in rel_objs_query_result]
if rel_objs_query_result
else []
)
# Get constraints & indexes
try:
constraint = self.structured_query("SHOW CONSTRAINTS")
index = self.structured_query(
"CALL apoc.schema.nodes() YIELD label, properties, type, size, "
"valuesSelectivity WHERE type = 'RANGE' RETURN *, "
"size * valuesSelectivity as distinctValues"
)
except (
neo4j.exceptions.ClientError
): # Read-only user might not have access to schema information
constraint = []
index = []
self.structured_schema = {
"node_props": {el["labels"]: el["properties"] for el in node_properties},
"rel_props": {el["type"]: el["properties"] for el in rel_properties},
"relationships": relationships,
"metadata": {"constraint": constraint, "index": index},
}
schema_counts = self.structured_query(
"CALL apoc.meta.graphSample() YIELD nodes, relationships "
"RETURN nodes, [rel in relationships | {name:apoc.any.property"
"(rel, 'type'), count: apoc.any.property(rel, 'count')}]"
" AS relationships"
)
# Update node info
for node in schema_counts[0].get("nodes", []):
# Skip bloom labels
if node["name"] in EXCLUDED_LABELS:
continue
node_props = self.structured_schema["node_props"].get(node["name"])
if not node_props: # The node has no properties
continue
enhanced_cypher = self._enhanced_schema_cypher(
node["name"], node_props, node["count"] < EXHAUSTIVE_SEARCH_LIMIT
)
enhanced_info = self.structured_query(enhanced_cypher)[0]["output"]
for prop in node_props:
if prop["property"] in enhanced_info:
prop.update(enhanced_info[prop["property"]])
# Update rel info
for rel in schema_counts[0].get("relationships", []):
# Skip bloom labels
if rel["name"] in EXCLUDED_RELS:
continue
rel_props = self.structured_schema["rel_props"].get(rel["name"])
if not rel_props: # The rel has no properties
continue
enhanced_cypher = self._enhanced_schema_cypher(
rel["name"],
rel_props,
rel["count"] < EXHAUSTIVE_SEARCH_LIMIT,
is_relationship=True,
)
try:
enhanced_info = self.structured_query(enhanced_cypher)[0]["output"]
for prop in rel_props:
if prop["property"] in enhanced_info:
prop.update(enhanced_info[prop["property"]])
except neo4j.exceptions.ClientError:
# Sometimes the types are not consistent in the db
pass
def upsert_nodes(self, nodes: List[LabelledNode]) -> None:
# Lists to hold separated types
entity_dicts: List[dict] = []
chunk_dicts: List[dict] = []
# Sort by type
for item in nodes:
if isinstance(item, EntityNode):
entity_dicts.append({**item.dict(), "id": item.id})
elif isinstance(item, ChunkNode):
chunk_dicts.append({**item.dict(), "id": item.id})
else:
# Log that we do not support these types of nodes
# Or raise an error?
pass
if chunk_dicts:
self.structured_query(
"""
UNWIND $data AS row
MERGE (c:Chunk {id: row.id})
SET c.text = row.text
WITH c, row
SET c += row.properties
WITH c, row.embedding AS embedding
WHERE embedding IS NOT NULL
CALL db.create.setNodeVectorProperty(c, 'embedding', embedding)
RETURN count(*)
""",
param_map={"data": chunk_dicts},
)
if entity_dicts:
self.structured_query(
"""
UNWIND $data AS row
MERGE (e:`__Entity__` {id: row.id})
SET e += apoc.map.clean(row.properties, [], [])
SET e.name = row.name
WITH e, row
CALL apoc.create.addLabels(e, [row.label])
YIELD node
WITH e, row
CALL {
WITH e, row
WITH e, row
WHERE row.embedding IS NOT NULL
CALL db.create.setNodeVectorProperty(e, 'embedding', row.embedding)
RETURN count(*) AS count
}
WITH e, row WHERE row.properties.triplet_source_id IS NOT NULL
MERGE (c:Chunk {id: row.properties.triplet_source_id})
MERGE (e)<-[:MENTIONS]-(c)
""",
param_map={"data": entity_dicts},
)
def upsert_relations(self, relations: List[Relation]) -> None:
"""添加关系。"""
params = [r.dict() for r in relations]
self.structured_query(
"""
UNWIND $data AS row
MERGE (source {id: row.source_id})
MERGE (target {id: row.target_id})
WITH source, target, row
CALL apoc.merge.relationship(source, row.label, {}, row.properties, target) YIELD rel
RETURN count(*)
""",
param_map={"data": params},
)
def get(
self,
properties: Optional[dict] = None,
ids: Optional[List[str]] = None,
) -> List[LabelledNode]:
"""获取节点。"""
cypher_statement = "MATCH (e) "
params = {}
if properties or ids:
cypher_statement += "WHERE "
if ids:
cypher_statement += "e.id in $ids "
params["ids"] = ids
if properties:
prop_list = []
for i, prop in enumerate(properties):
prop_list.append(f"e.`{prop}` = $property_{i}")
params[f"property_{i}"] = properties[prop]
cypher_statement += " AND ".join(prop_list)
return_statement = """
WITH e
RETURN e.id AS name,
[l in labels(e) WHERE l <> '__Entity__' | l][0] AS type,
e{.* , embedding: Null, id: Null} AS properties
"""
cypher_statement += return_statement
response = self.structured_query(cypher_statement, param_map=params)
nodes = []
for record in response:
if "text" in record["properties"]:
text = record["properties"].pop("text")
nodes.append(
ChunkNode(
id_=record["name"],
text=text,
properties=remove_empty_values(record["properties"]),
)
)
else:
nodes.append(
EntityNode(
name=record["name"],
label=record["type"],
properties=remove_empty_values(record["properties"]),
)
)
return nodes
def get_triplets(
self,
entity_names: Optional[List[str]] = None,
relation_names: Optional[List[str]] = None,
properties: Optional[dict] = None,
ids: Optional[List[str]] = None,
) -> List[Triplet]:
# TODO: handle ids of chunk nodes
cypher_statement = "MATCH (e:`__Entity__`) "
params = {}
if entity_names or properties or ids:
cypher_statement += "WHERE "
if entity_names:
cypher_statement += "e.name in $entity_names "
params["entity_names"] = entity_names
if ids:
cypher_statement += "e.id in $ids "
params["ids"] = ids
if properties:
prop_list = []
for i, prop in enumerate(properties):
prop_list.append(f"e.`{prop}` = $property_{i}")
params[f"property_{i}"] = properties[prop]
cypher_statement += " AND ".join(prop_list)
return_statement = f"""
WITH e
CALL {{
WITH e
MATCH (e)-[r{':`' + '`|`'.join(relation_names) + '`' if relation_names else ''}]->(t)
RETURN e.name AS source_id, [l in labels(e) WHERE l <> '__Entity__' | l][0] AS source_type,
e{{.* , embedding: Null, name: Null}} AS source_properties,
type(r) AS type,
t.name AS target_id, [l in labels(t) WHERE l <> '__Entity__' | l][0] AS target_type,
t{{.* , embedding: Null, name: Null}} AS target_properties
UNION ALL
WITH e
MATCH (e)<-[r{':`' + '`|`'.join(relation_names) + '`' if relation_names else ''}]-(t)
RETURN t.name AS source_id, [l in labels(t) WHERE l <> '__Entity__' | l][0] AS source_type,
e{{.* , embedding: Null, name: Null}} AS source_properties,
type(r) AS type,
e.name AS target_id, [l in labels(e) WHERE l <> '__Entity__' | l][0] AS target_type,
t{{.* , embedding: Null, name: Null}} AS target_properties
}}
RETURN source_id, source_type, type, target_id, target_type, source_properties, target_properties"""
cypher_statement += return_statement
data = self.structured_query(cypher_statement, param_map=params)
triples = []
for record in data:
source = EntityNode(
name=record["source_id"],
label=record["source_type"],
properties=remove_empty_values(record["source_properties"]),
)
target = EntityNode(
name=record["target_id"],
label=record["target_type"],
properties=remove_empty_values(record["target_properties"]),
)
rel = Relation(
source_id=record["source_id"],
target_id=record["target_id"],
label=record["type"],
)
triples.append([source, rel, target])
return triples
def get_rel_map(
self,
graph_nodes: List[LabelledNode],
depth: int = 2,
limit: int = 30,
ignore_rels: Optional[List[str]] = None,
) -> List[Triplet]:
"""获取深度感知的相对地图。"""
triples = []
ids = [node.id for node in graph_nodes]
# Needs some optimization
response = self.structured_query(
f"""
MATCH (e:`__Entity__`)
WHERE e.id in $ids
MATCH p=(e)-[r*1..{depth}]-(other)
WHERE ALL(rel in relationships(p) WHERE type(rel) <> 'MENTIONS')
UNWIND relationships(p) AS rel
WITH distinct rel
WITH startNode(rel) AS source,
type(rel) AS type,
endNode(rel) AS endNode
RETURN source.id AS source_id, [l in labels(source) WHERE l <> '__Entity__' | l][0] AS source_type,
source{{.* , embedding: Null, id: Null}} AS source_properties,
type,
endNode.id AS target_id, [l in labels(endNode) WHERE l <> '__Entity__' | l][0] AS target_type,
endNode{{.* , embedding: Null, id: Null}} AS target_properties
LIMIT toInteger($limit)
""",
param_map={"ids": ids, "limit": limit},
)
ignore_rels = ignore_rels or []
for record in response:
if record["type"] in ignore_rels:
continue
source = EntityNode(
name=record["source_id"],
label=record["source_type"],
properties=remove_empty_values(record["source_properties"]),
)
target = EntityNode(
name=record["target_id"],
label=record["target_type"],
properties=remove_empty_values(record["target_properties"]),
)
rel = Relation(
source_id=record["source_id"],
target_id=record["target_id"],
label=record["type"],
)
triples.append([source, rel, target])
return triples
def structured_query(
self, query: str, param_map: Optional[Dict[str, Any]] = None
) -> Any:
param_map = param_map or {}
with self._driver.session(database=self._database) as session:
result = session.run(query, param_map)
full_result = [d.data() for d in result]
if self.sanitize_query_output:
return value_sanitize(full_result)
return full_result
def vector_query(
self, query: VectorStoreQuery, **kwargs: Any
) -> Tuple[List[LabelledNode], List[float]]:
"""使用向量存储查询图存储。"""
data = self.structured_query(
"""MATCH (e:`__Entity__`)
WHERE e.embedding IS NOT NULL AND size(e.embedding) = $dimension
WITH e, vector.similarity.cosine(e.embedding, $embedding) AS score
ORDER BY score DESC LIMIT toInteger($limit)
RETURN e.id AS name,
[l in labels(e) WHERE l <> '__Entity__' | l][0] AS type,
e{.* , embedding: Null, name: Null, id: Null} AS properties,
score""",
param_map={
"embedding": query.query_embedding,
"dimension": len(query.query_embedding),
"limit": query.similarity_top_k,
},
)
nodes = []
scores = []
for record in data:
node = EntityNode(
name=record["name"],
label=record["type"],
properties=remove_empty_values(record["properties"]),
)
nodes.append(node)
scores.append(record["score"])
return (nodes, scores)
def delete(
self,
entity_names: Optional[List[str]] = None,
relation_names: Optional[List[str]] = None,
properties: Optional[dict] = None,
ids: Optional[List[str]] = None,
) -> None:
"""删除匹配的数据。"""
if entity_names:
self.structured_query(
"MATCH (n) WHERE n.name IN $entity_names DETACH DELETE n",
param_map={"entity_names": entity_names},
)
if ids:
self.structured_query(
"MATCH (n) WHERE n.id IN $ids DETACH DELETE n",
param_map={"ids": ids},
)
if relation_names:
for rel in relation_names:
self.structured_query(f"MATCH ()-[r:`{rel}`]->() DELETE r")
if properties:
cypher = "MATCH (e) WHERE "
prop_list = []
params = {}
for i, prop in enumerate(properties):
prop_list.append(f"e.`{prop}` = $property_{i}")
params[f"property_{i}"] = properties[prop]
cypher += " AND ".join(prop_list)
self.structured_query(cypher + " DETACH DELETE e", param_map=params)
def _enhanced_schema_cypher(
self,
label_or_type: str,
properties: List[Dict[str, Any]],
exhaustive: bool,
is_relationship: bool = False,
) -> str:
if is_relationship:
match_clause = f"MATCH ()-[n:`{label_or_type}`]->()"
else:
match_clause = f"MATCH (n:`{label_or_type}`)"
with_clauses = []
return_clauses = []
output_dict = {}
if exhaustive:
for prop in properties:
prop_name = prop["property"]
prop_type = prop["type"]
if prop_type == "STRING":
with_clauses.append(
f"collect(distinct substring(toString(n.`{prop_name}`), 0, 50)) "
f"AS `{prop_name}_values`"
)
return_clauses.append(
f"values:`{prop_name}_values`[..{DISTINCT_VALUE_LIMIT}],"
f" distinct_count: size(`{prop_name}_values`)"
)
elif prop_type in [
"INTEGER",
"FLOAT",
"DATE",
"DATE_TIME",
"LOCAL_DATE_TIME",
]:
with_clauses.append(f"min(n.`{prop_name}`) AS `{prop_name}_min`")
with_clauses.append(f"max(n.`{prop_name}`) AS `{prop_name}_max`")
with_clauses.append(
f"count(distinct n.`{prop_name}`) AS `{prop_name}_distinct`"
)
return_clauses.append(
f"min: toString(`{prop_name}_min`), "
f"max: toString(`{prop_name}_max`), "
f"distinct_count: `{prop_name}_distinct`"
)
elif prop_type == "LIST":
with_clauses.append(
f"min(size(n.`{prop_name}`)) AS `{prop_name}_size_min`, "
f"max(size(n.`{prop_name}`)) AS `{prop_name}_size_max`"
)
return_clauses.append(
f"min_size: `{prop_name}_size_min`, "
f"max_size: `{prop_name}_size_max`"
)
elif prop_type in ["BOOLEAN", "POINT", "DURATION"]:
continue
output_dict[prop_name] = "{" + return_clauses.pop() + "}"
else:
# Just sample 5 random nodes
match_clause += " WITH n LIMIT 5"
for prop in properties:
prop_name = prop["property"]
prop_type = prop["type"]
# Check if indexed property, we can still do exhaustive
prop_index = [
el
for el in self.structured_schema["metadata"]["index"]
if el["label"] == label_or_type
and el["properties"] == [prop_name]
and el["type"] == "RANGE"
]
if prop_type == "STRING":
if (
prop_index
and prop_index[0].get("size") > 0
and prop_index[0].get("distinctValues") <= DISTINCT_VALUE_LIMIT
):
distinct_values = self.query(
f"CALL apoc.schema.properties.distinct("
f"'{label_or_type}', '{prop_name}') YIELD value"
)[0]["value"]
return_clauses.append(
f"values: {distinct_values},"
f" distinct_count: {len(distinct_values)}"
)
else:
with_clauses.append(
f"collect(distinct substring(n.`{prop_name}`, 0, 50)) "
f"AS `{prop_name}_values`"
)
return_clauses.append(f"values: `{prop_name}_values`")
elif prop_type in [
"INTEGER",
"FLOAT",
"DATE",
"DATE_TIME",
"LOCAL_DATE_TIME",
]:
if not prop_index:
with_clauses.append(
f"collect(distinct toString(n.`{prop_name}`)) "
f"AS `{prop_name}_values`"
)
return_clauses.append(f"values: `{prop_name}_values`")
else:
with_clauses.append(
f"min(n.`{prop_name}`) AS `{prop_name}_min`"
)
with_clauses.append(
f"max(n.`{prop_name}`) AS `{prop_name}_max`"
)
with_clauses.append(
f"count(distinct n.`{prop_name}`) AS `{prop_name}_distinct`"
)
return_clauses.append(
f"min: toString(`{prop_name}_min`), "
f"max: toString(`{prop_name}_max`), "
f"distinct_count: `{prop_name}_distinct`"
)
elif prop_type == "LIST":
with_clauses.append(
f"min(size(n.`{prop_name}`)) AS `{prop_name}_size_min`, "
f"max(size(n.`{prop_name}`)) AS `{prop_name}_size_max`"
)
return_clauses.append(
f"min_size: `{prop_name}_size_min`, "
f"max_size: `{prop_name}_size_max`"
)
elif prop_type in ["BOOLEAN", "POINT", "DURATION"]:
continue
output_dict[prop_name] = "{" + return_clauses.pop() + "}"
with_clause = "WITH " + ",\n ".join(with_clauses)
return_clause = (
"RETURN {"
+ ", ".join(f"`{k}`: {v}" for k, v in output_dict.items())
+ "} AS output"
)
# Combine all parts of the Cypher query
return f"{match_clause}\n{with_clause}\n{return_clause}"
def get_schema(self, refresh: bool = False) -> Any:
if refresh:
self.refresh_schema()
return self.structured_schema
def get_schema_str(self, refresh: bool = False) -> str:
schema = self.get_schema(refresh=refresh)
formatted_node_props = []
formatted_rel_props = []
if self.enhcnaced_schema:
# Enhanced formatting for nodes
for node_type, properties in schema["node_props"].items():
formatted_node_props.append(f"- **{node_type}**")
for prop in properties:
example = ""
if prop["type"] == "STRING" and prop.get("values"):
if prop.get("distinct_count", 11) > DISTINCT_VALUE_LIMIT:
example = (
f'Example: "{clean_string_values(prop["values"][0])}"'
if prop["values"]
else ""
)
else: # If less than 10 possible values return all
example = (
(
"Available options: "
f'{[clean_string_values(el) for el in prop["values"]]}'
)
if prop["values"]
else ""
)
elif prop["type"] in [
"INTEGER",
"FLOAT",
"DATE",
"DATE_TIME",
"LOCAL_DATE_TIME",
]:
if prop.get("min") is not None:
example = f'Min: {prop["min"]}, Max: {prop["max"]}'
else:
example = (
f'Example: "{prop["values"][0]}"'
if prop.get("values")
else ""
)
elif prop["type"] == "LIST":
# Skip embeddings
if not prop.get("min_size") or prop["min_size"] > LIST_LIMIT:
continue
example = f'Min Size: {prop["min_size"]}, Max Size: {prop["max_size"]}'
formatted_node_props.append(
f" - `{prop['property']}`: {prop['type']} {example}"
)
# Enhanced formatting for relationships
for rel_type, properties in schema["rel_props"].items():
formatted_rel_props.append(f"- **{rel_type}**")
for prop in properties:
example = ""
if prop["type"] == "STRING":
if prop.get("distinct_count", 11) > DISTINCT_VALUE_LIMIT:
example = (
f'Example: "{clean_string_values(prop["values"][0])}"'
if prop.get("values")
else ""
)
else: # If less than 10 possible values return all
example = (
(
"Available options: "
f'{[clean_string_values(el) for el in prop["values"]]}'
)
if prop.get("values")
else ""
)
elif prop["type"] in [
"INTEGER",
"FLOAT",
"DATE",
"DATE_TIME",
"LOCAL_DATE_TIME",
]:
if prop.get("min"): # If we have min/max
example = f'Min: {prop["min"]}, Max: {prop["max"]}'
else: # return a single value
example = (
f'Example: "{prop["values"][0]}"'
if prop.get("values")
else ""
)
elif prop["type"] == "LIST":
# Skip embeddings
if prop["min_size"] > LIST_LIMIT:
continue
example = f'Min Size: {prop["min_size"]}, Max Size: {prop["max_size"]}'
formatted_rel_props.append(
f" - `{prop['property']}: {prop['type']}` {example}"
)
else:
# Format node properties
for label, props in schema["node_props"].items():
props_str = ", ".join(
[f"{prop['property']}: {prop['type']}" for prop in props]
)
formatted_node_props.append(f"{label} {{{props_str}}}")
# Format relationship properties using structured_schema
for type, props in schema["rel_props"].items():
props_str = ", ".join(
[f"{prop['property']}: {prop['type']}" for prop in props]
)
formatted_rel_props.append(f"{type} {{{props_str}}}")
# Format relationships
formatted_rels = [
f"(:{el['start']})-[:{el['type']}]->(:{el['end']})"
for el in schema["relationships"]
]
return "\n".join(
[
"Node properties:",
"\n".join(formatted_node_props),
"Relationship properties:",
"\n".join(formatted_rel_props),
"The relationships:",
"\n".join(formatted_rels),
]
)
|