Skip to content

Astra db

AstraDBVectorStore #

Bases: BasePydanticVectorStore

# Astra DB向量存储。

# Astra表的抽象,具有向量相似性搜索功能。文档及其嵌入式存储在Astra表中,并且用于搜索的是支持向量的索引。
# 表不需要事先存在:如果需要,它将在后台创建。

# 所有Astra操作都通过astrapy库完成。

# 访问https://astra.datastax.com/signup 创建帐户并获取API密钥。

# Args:
#     collection_name (str): 要使用的集合名称。如果不存在,将会被创建。
#     token (str): 要使用的Astra DB应用程序令牌。
#     api_endpoint (str): 数据库的Astra DB JSON API端点。
#     embedding_dimension (int): 使用的嵌入向量的长度。
#     namespace (Optional[str]): 要使用的命名空间。如果未提供,则为'default_keyspace'。
#     ttl_seconds (Optional[int]): 插入条目的过期时间。默认为不过期。

# 示例:
#     `pip install llama-index-vector-stores-astra`

#     ```python
#     from llama_index.vector_stores.astra import AstraDBVectorStore

#     # 创建Astra DB向量存储对象
#     astra_db_store = AstraDBVectorStore(
#         collection_name="astra_v_table",
#         token=token,
#         api_endpoint=api_endpoint,
#         embedding_dimension=1536,
#     )
#     ```
Source code in llama_index/vector_stores/astra_db/base.py
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
class AstraDBVectorStore(BasePydanticVectorStore):
    """```python
# Astra DB向量存储。

# Astra表的抽象,具有向量相似性搜索功能。文档及其嵌入式存储在Astra表中,并且用于搜索的是支持向量的索引。
# 表不需要事先存在:如果需要,它将在后台创建。

# 所有Astra操作都通过astrapy库完成。

# 访问https://astra.datastax.com/signup 创建帐户并获取API密钥。

# Args:
#     collection_name (str): 要使用的集合名称。如果不存在,将会被创建。
#     token (str): 要使用的Astra DB应用程序令牌。
#     api_endpoint (str): 数据库的Astra DB JSON API端点。
#     embedding_dimension (int): 使用的嵌入向量的长度。
#     namespace (Optional[str]): 要使用的命名空间。如果未提供,则为'default_keyspace'。
#     ttl_seconds (Optional[int]): 插入条目的过期时间。默认为不过期。

# 示例:
#     `pip install llama-index-vector-stores-astra`

#     ```python
#     from llama_index.vector_stores.astra import AstraDBVectorStore

#     # 创建Astra DB向量存储对象
#     astra_db_store = AstraDBVectorStore(
#         collection_name="astra_v_table",
#         token=token,
#         api_endpoint=api_endpoint,
#         embedding_dimension=1536,
#     )
#     ```

```"""

    stores_text: bool = True
    flat_metadata: bool = True

    _embedding_dimension: int = PrivateAttr()
    _ttl_seconds: Optional[int] = PrivateAttr()
    _astra_db: Any = PrivateAttr()
    _astra_db_collection: Any = PrivateAttr()

    def __init__(
        self,
        *,
        collection_name: str,
        token: str,
        api_endpoint: str,
        embedding_dimension: int,
        namespace: Optional[str] = None,
        ttl_seconds: Optional[int] = None,
    ) -> None:
        super().__init__()

        # Set all the required class parameters
        self._embedding_dimension = embedding_dimension
        self._ttl_seconds = ttl_seconds

        _logger.debug("Creating the Astra DB table")

        # Build the Astra DB object
        self._astra_db = AstraDB(
            api_endpoint=api_endpoint,
            token=token,
            namespace=namespace,
            caller_name=getattr(llama_index, "__name__", "llama_index"),
            caller_version=getattr(llama_index.core, "__version__", None),
        )

        from astrapy.api import APIRequestError

        try:
            # Create and connect to the newly created collection
            self._astra_db_collection = self._astra_db.create_collection(
                collection_name=collection_name,
                dimension=embedding_dimension,
                options={"indexing": {"deny": NON_INDEXED_FIELDS}},
            )
        except APIRequestError:
            # possibly the collection is preexisting and has legacy
            # indexing settings: verify
            get_coll_response = self._astra_db.get_collections(
                options={"explain": True}
            )
            collections = (get_coll_response["status"] or {}).get("collections") or []
            preexisting = [
                collection
                for collection in collections
                if collection["name"] == collection_name
            ]
            if preexisting:
                pre_collection = preexisting[0]
                # if it has no "indexing", it is a legacy collection;
                # otherwise it's unexpected warn and proceed at user's risk
                pre_col_options = pre_collection.get("options") or {}
                if "indexing" not in pre_col_options:
                    warn(
                        (
                            f"Collection '{collection_name}' is detected as "
                            "having indexing turned on for all fields "
                            "(either created manually or by older versions "
                            "of this plugin). This implies stricter "
                            "limitations on the amount of text"
                            " each entry can store. Consider reindexing anew on a"
                            " fresh collection to be able to store longer texts."
                        ),
                        UserWarning,
                        stacklevel=2,
                    )
                    self._astra_db_collection = self._astra_db.collection(
                        collection_name=collection_name,
                    )
                else:
                    options_json = json.dumps(pre_col_options["indexing"])
                    warn(
                        (
                            f"Collection '{collection_name}' has unexpected 'indexing'"
                            f" settings (options.indexing = {options_json})."
                            " This can result in odd behaviour when running "
                            " metadata filtering and/or unwarranted limitations"
                            " on storing long texts. Consider reindexing anew on a"
                            " fresh collection."
                        ),
                        UserWarning,
                        stacklevel=2,
                    )
                    self._astra_db_collection = self._astra_db.collection(
                        collection_name=collection_name,
                    )
            else:
                # other exception
                raise

    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """将节点添加到索引中。

Args:
    节点:List[BaseNode]:带有嵌入的节点列表
"""
        # Initialize list of objects to track
        nodes_list = []

        # Process each node individually
        for node in nodes:
            # Get the metadata
            metadata = node_to_metadata_dict(
                node,
                remove_text=True,
                flat_metadata=self.flat_metadata,
            )

            # One dictionary of node data per node
            nodes_list.append(
                {
                    "_id": node.node_id,
                    "content": node.get_content(metadata_mode=MetadataMode.NONE),
                    "metadata": metadata,
                    "$vector": node.get_embedding(),
                }
            )

        # Log the number of rows being added
        _logger.debug(f"Adding {len(nodes_list)} rows to table")

        # Initialize an empty list to hold the batches
        batched_list = []

        # Iterate over the node_list in steps of MAX_INSERT_BATCH_SIZE
        for i in range(0, len(nodes_list), MAX_INSERT_BATCH_SIZE):
            # Append a slice of node_list to the batched_list
            batched_list.append(nodes_list[i : i + MAX_INSERT_BATCH_SIZE])

        # Perform the bulk insert
        for i, batch in enumerate(batched_list):
            _logger.debug(f"Processing batch #{i + 1} of size {len(batch)}")

            # Go to astrapy to perform the bulk insert
            self._astra_db_collection.insert_many(batch)

        # Return the list of ids
        return [str(n["_id"]) for n in nodes_list]

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """使用ref_doc_id删除节点。

Args:
    ref_doc_id(str):要删除的文档的ID。
"""
        _logger.debug("Deleting a document from the Astra table")

        self._astra_db_collection.delete_one(id=ref_doc_id, **delete_kwargs)

    @property
    def client(self) -> Any:
        """返回基础的Astra向量表对象。"""
        return self._astra_db_collection

    @staticmethod
    def _query_filters_to_dict(query_filters: MetadataFilters) -> Dict[str, Any]:
        # Allow only legacy ExactMatchFilter and MetadataFilter with FilterOperator.EQ
        if not all(
            (
                isinstance(f, ExactMatchFilter)
                or (isinstance(f, MetadataFilter) and f.operator == FilterOperator.EQ)
            )
            for f in query_filters.filters
        ):
            raise NotImplementedError(
                "Only filters with operator=FilterOperator.EQ are supported"
            )
        # nested filters, i.e. f being of type MetadataFilters, is excluded above:
        return {f"metadata.{f.key}": f.value for f in query_filters.filters}  # type: ignore[union-attr]

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """查询前k个最相似节点的索引。"""
        # Get the currently available query modes
        _available_query_modes = [
            VectorStoreQueryMode.DEFAULT,
            VectorStoreQueryMode.MMR,
        ]

        # Reject query if not available
        if query.mode not in _available_query_modes:
            raise NotImplementedError(f"Query mode {query.mode} not available.")

        # Get the query embedding
        query_embedding = cast(List[float], query.query_embedding)

        # Process the metadata filters as needed
        if query.filters is not None:
            query_metadata = self._query_filters_to_dict(query.filters)
        else:
            query_metadata = {}

        # Get the scores depending on the query mode
        if query.mode == VectorStoreQueryMode.DEFAULT:
            # Call the vector_find method of AstraPy
            matches = self._astra_db_collection.vector_find(
                vector=query_embedding,
                limit=query.similarity_top_k,
                filter=query_metadata,
                fields=["*"],
                include_similarity=True,
            )

            # Get the scores associated with each
            top_k_scores = [match["$similarity"] for match in matches]
        elif query.mode == VectorStoreQueryMode.MMR:
            # Querying a larger number of vectors and then doing MMR on them.
            if (
                kwargs.get("mmr_prefetch_factor") is not None
                and kwargs.get("mmr_prefetch_k") is not None
            ):
                raise ValueError(
                    "'mmr_prefetch_factor' and 'mmr_prefetch_k' "
                    "cannot coexist in a call to query()"
                )
            else:
                if kwargs.get("mmr_prefetch_k") is not None:
                    prefetch_k0 = int(kwargs["mmr_prefetch_k"])
                else:
                    prefetch_k0 = int(
                        query.similarity_top_k
                        * kwargs.get("mmr_prefetch_factor", DEFAULT_MMR_PREFETCH_FACTOR)
                    )
            # Get the most we can possibly need to fetch
            prefetch_k = max(prefetch_k0, query.similarity_top_k)

            # Call AstraPy to fetch them (similarity from DB not needed here)
            prefetch_matches = self._astra_db_collection.vector_find(
                vector=query_embedding,
                limit=prefetch_k,
                filter=query_metadata,
                fields=["*"],
            )

            # Get the MMR threshold
            mmr_threshold = query.mmr_threshold or kwargs.get("mmr_threshold")

            # If we have found documents, we can proceed
            if prefetch_matches:
                zipped_indices, zipped_embeddings = zip(
                    *enumerate(match["$vector"] for match in prefetch_matches)
                )
                pf_match_indices, pf_match_embeddings = list(zipped_indices), list(
                    zipped_embeddings
                )
            else:
                pf_match_indices, pf_match_embeddings = [], []

            # Call the Llama utility function to get the top  k
            mmr_similarities, mmr_indices = get_top_k_mmr_embeddings(
                query_embedding,
                pf_match_embeddings,
                similarity_top_k=query.similarity_top_k,
                embedding_ids=pf_match_indices,
                mmr_threshold=mmr_threshold,
            )

            # Finally, build the final results based on the mmr values
            matches = [prefetch_matches[mmr_index] for mmr_index in mmr_indices]
            top_k_scores = mmr_similarities

        # We have three lists to return
        top_k_nodes = []
        top_k_ids = []

        # Get every match
        for match in matches:
            # Check whether we have a llama-generated node content field
            if "_node_content" not in match["metadata"]:
                match["metadata"]["_node_content"] = json.dumps(match)

            # Create a new node object from the node metadata
            node = metadata_dict_to_node(match["metadata"], text=match["content"])

            # Append to the respective lists
            top_k_nodes.append(node)
            top_k_ids.append(match["_id"])

        # return our final result
        return VectorStoreQueryResult(
            nodes=top_k_nodes,
            similarities=top_k_scores,
            ids=top_k_ids,
        )

client property #

client: Any

返回基础的Astra向量表对象。

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

将节点添加到索引中。

Source code in llama_index/vector_stores/astra_db/base.py
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """将节点添加到索引中。

Args:
    节点:List[BaseNode]:带有嵌入的节点列表
"""
        # Initialize list of objects to track
        nodes_list = []

        # Process each node individually
        for node in nodes:
            # Get the metadata
            metadata = node_to_metadata_dict(
                node,
                remove_text=True,
                flat_metadata=self.flat_metadata,
            )

            # One dictionary of node data per node
            nodes_list.append(
                {
                    "_id": node.node_id,
                    "content": node.get_content(metadata_mode=MetadataMode.NONE),
                    "metadata": metadata,
                    "$vector": node.get_embedding(),
                }
            )

        # Log the number of rows being added
        _logger.debug(f"Adding {len(nodes_list)} rows to table")

        # Initialize an empty list to hold the batches
        batched_list = []

        # Iterate over the node_list in steps of MAX_INSERT_BATCH_SIZE
        for i in range(0, len(nodes_list), MAX_INSERT_BATCH_SIZE):
            # Append a slice of node_list to the batched_list
            batched_list.append(nodes_list[i : i + MAX_INSERT_BATCH_SIZE])

        # Perform the bulk insert
        for i, batch in enumerate(batched_list):
            _logger.debug(f"Processing batch #{i + 1} of size {len(batch)}")

            # Go to astrapy to perform the bulk insert
            self._astra_db_collection.insert_many(batch)

        # Return the list of ids
        return [str(n["_id"]) for n in nodes_list]

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

使用ref_doc_id删除节点。

Source code in llama_index/vector_stores/astra_db/base.py
229
230
231
232
233
234
235
236
237
    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """使用ref_doc_id删除节点。

Args:
    ref_doc_id(str):要删除的文档的ID。
"""
        _logger.debug("Deleting a document from the Astra table")

        self._astra_db_collection.delete_one(id=ref_doc_id, **delete_kwargs)

query #

query(
    query: VectorStoreQuery, **kwargs: Any
) -> VectorStoreQueryResult

查询前k个最相似节点的索引。

Source code in llama_index/vector_stores/astra_db/base.py
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
    """查询前k个最相似节点的索引。"""
    # Get the currently available query modes
    _available_query_modes = [
        VectorStoreQueryMode.DEFAULT,
        VectorStoreQueryMode.MMR,
    ]

    # Reject query if not available
    if query.mode not in _available_query_modes:
        raise NotImplementedError(f"Query mode {query.mode} not available.")

    # Get the query embedding
    query_embedding = cast(List[float], query.query_embedding)

    # Process the metadata filters as needed
    if query.filters is not None:
        query_metadata = self._query_filters_to_dict(query.filters)
    else:
        query_metadata = {}

    # Get the scores depending on the query mode
    if query.mode == VectorStoreQueryMode.DEFAULT:
        # Call the vector_find method of AstraPy
        matches = self._astra_db_collection.vector_find(
            vector=query_embedding,
            limit=query.similarity_top_k,
            filter=query_metadata,
            fields=["*"],
            include_similarity=True,
        )

        # Get the scores associated with each
        top_k_scores = [match["$similarity"] for match in matches]
    elif query.mode == VectorStoreQueryMode.MMR:
        # Querying a larger number of vectors and then doing MMR on them.
        if (
            kwargs.get("mmr_prefetch_factor") is not None
            and kwargs.get("mmr_prefetch_k") is not None
        ):
            raise ValueError(
                "'mmr_prefetch_factor' and 'mmr_prefetch_k' "
                "cannot coexist in a call to query()"
            )
        else:
            if kwargs.get("mmr_prefetch_k") is not None:
                prefetch_k0 = int(kwargs["mmr_prefetch_k"])
            else:
                prefetch_k0 = int(
                    query.similarity_top_k
                    * kwargs.get("mmr_prefetch_factor", DEFAULT_MMR_PREFETCH_FACTOR)
                )
        # Get the most we can possibly need to fetch
        prefetch_k = max(prefetch_k0, query.similarity_top_k)

        # Call AstraPy to fetch them (similarity from DB not needed here)
        prefetch_matches = self._astra_db_collection.vector_find(
            vector=query_embedding,
            limit=prefetch_k,
            filter=query_metadata,
            fields=["*"],
        )

        # Get the MMR threshold
        mmr_threshold = query.mmr_threshold or kwargs.get("mmr_threshold")

        # If we have found documents, we can proceed
        if prefetch_matches:
            zipped_indices, zipped_embeddings = zip(
                *enumerate(match["$vector"] for match in prefetch_matches)
            )
            pf_match_indices, pf_match_embeddings = list(zipped_indices), list(
                zipped_embeddings
            )
        else:
            pf_match_indices, pf_match_embeddings = [], []

        # Call the Llama utility function to get the top  k
        mmr_similarities, mmr_indices = get_top_k_mmr_embeddings(
            query_embedding,
            pf_match_embeddings,
            similarity_top_k=query.similarity_top_k,
            embedding_ids=pf_match_indices,
            mmr_threshold=mmr_threshold,
        )

        # Finally, build the final results based on the mmr values
        matches = [prefetch_matches[mmr_index] for mmr_index in mmr_indices]
        top_k_scores = mmr_similarities

    # We have three lists to return
    top_k_nodes = []
    top_k_ids = []

    # Get every match
    for match in matches:
        # Check whether we have a llama-generated node content field
        if "_node_content" not in match["metadata"]:
            match["metadata"]["_node_content"] = json.dumps(match)

        # Create a new node object from the node metadata
        node = metadata_dict_to_node(match["metadata"], text=match["content"])

        # Append to the respective lists
        top_k_nodes.append(node)
        top_k_ids.append(match["_id"])

    # return our final result
    return VectorStoreQueryResult(
        nodes=top_k_nodes,
        similarities=top_k_scores,
        ids=top_k_ids,
    )