Skip to content

Epsilla

EpsillaVectorStore #

Bases: BasePydanticVectorStore

Epsilla向量存储。

在这个向量存储中,我们将文本、其嵌入和一些元数据存储在Epsilla集合中。这个实现允许使用已经存在的集合。它还支持在集合不存在或overwrite设置为True时创建一个新的集合。

作为先决条件,您需要安装pyepsilla包,并且有一个正在运行的Epsilla向量数据库(例如,通过我们的docker镜像)。请参阅以下文档,了解如何运行Epsilla向量数据库:https://epsilla-inc.gitbook.io/epsilladb/quick-start

Parameters:

Name Type Description Default
client Any

要连接的Epsilla客户端。

required
collection_name Optional[str]

要使用的集合名称。默认为"llama_collection"。

'llama_collection'
db_path Optional[str]

数据库将持久化的路径。默认为"/tmp/langchain-epsilla"。

DEFAULT_PERSIST_DIR
db_name Optional[str]

给加载的数据库命名。默认为"langchain_store"。

'llama_db'
dimension Optional[int]

嵌入的维度。如果未提供,将在第一次插入时创建集合。默认为None。

None
overwrite Optional[bool]

是否覆盖同名的现有集合。默认为False。

False

Returns:

Name Type Description
EpsillaVectorStore

支持添加、删除和查询的向量存储。

示例: pip install llama-index-vector-stores-epsilla

```python
from llama_index.vector_stores.epsilla import EpsillaVectorStore
from pyepsilla import vectordb

client = vectordb.Client()
vector_store = EpsillaVectorStore(client=client, db_path="/tmp/llamastore")
```
Source code in llama_index/vector_stores/epsilla/base.py
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
class EpsillaVectorStore(BasePydanticVectorStore):
    """Epsilla向量存储。

在这个向量存储中,我们将文本、其嵌入和一些元数据存储在Epsilla集合中。这个实现允许使用已经存在的集合。它还支持在集合不存在或`overwrite`设置为True时创建一个新的集合。

作为先决条件,您需要安装``pyepsilla``包,并且有一个正在运行的Epsilla向量数据库(例如,通过我们的docker镜像)。请参阅以下文档,了解如何运行Epsilla向量数据库:https://epsilla-inc.gitbook.io/epsilladb/quick-start

Args:
    client (Any): 要连接的Epsilla客户端。
    collection_name (Optional[str]): 要使用的集合名称。默认为"llama_collection"。
    db_path (Optional[str]): 数据库将持久化的路径。默认为"/tmp/langchain-epsilla"。
    db_name (Optional[str]): 给加载的数据库命名。默认为"langchain_store"。
    dimension (Optional[int]): 嵌入的维度。如果未提供,将在第一次插入时创建集合。默认为None。
    overwrite (Optional[bool]): 是否覆盖同名的现有集合。默认为False。

Returns:
    EpsillaVectorStore: 支持添加、删除和查询的向量存储。

示例:
    `pip install llama-index-vector-stores-epsilla`

    ```python
    from llama_index.vector_stores.epsilla import EpsillaVectorStore
    from pyepsilla import vectordb

    client = vectordb.Client()
    vector_store = EpsillaVectorStore(client=client, db_path="/tmp/llamastore")
    ```"""

    stores_text = True
    flat_metadata: bool = False

    _client: vectordb.Client = PrivateAttr()
    _collection_name: str = PrivateAttr()
    _collection_created: bool = PrivateAttr()

    def __init__(
        self,
        client: Any,
        collection_name: str = "llama_collection",
        db_path: Optional[str] = DEFAULT_PERSIST_DIR,  # sub folder
        db_name: Optional[str] = "llama_db",
        dimension: Optional[int] = None,
        overwrite: bool = False,
        **kwargs: Any,
    ) -> None:
        """初始化参数。"""
        super().__init__()

        if not isinstance(client, vectordb.Client):
            raise TypeError(
                f"client should be an instance of pyepsilla.vectordb.Client, "
                f"got {type(client)}"
            )

        self._client: vectordb.Client = client
        self._collection_name = collection_name
        self._client.load_db(db_name, db_path)
        self._client.use_db(db_name)
        self._collection_created = False

        status_code, response = self._client.list_tables()
        if status_code != 200:
            self._handle_error(msg=response["message"])
        table_list = response["result"]

        if self._collection_name in table_list and overwrite is False:
            self._collection_created = True

        if self._collection_name in table_list and overwrite is True:
            status_code, response = self._client.drop_table(
                table_name=self._collection_name
            )
            if status_code != 200:
                self._handle_error(msg=response["message"])
            logger.debug(
                f"Successfully removed old collection: {self._collection_name}"
            )
            if dimension is not None:
                self._create_collection(dimension)

        if self._collection_name not in table_list and dimension is not None:
            self._create_collection(dimension)

    @classmethod
    def class_name(cls) -> str:
        return "EpsillaVectorStore"

    @property
    def client(self) -> Any:
        """返回Epsilla客户端。"""
        return self._client

    def _handle_error(self, msg: str) -> None:
        """处理错误。"""
        logger.error(f"Failed to get records: {msg}")
        raise Exception(f"Error: {msg}.")

    def _create_collection(self, dimension: int) -> None:
        """创建集合。

Args:
    dimension(int):嵌入的维度。
"""
        fields: List[dict] = [
            {"name": "id", "dataType": "STRING", "primaryKey": True},
            {"name": DEFAULT_DOC_ID_KEY, "dataType": "STRING"},
            {"name": DEFAULT_TEXT_KEY, "dataType": "STRING"},
            {
                "name": DEFAULT_EMBEDDING_KEY,
                "dataType": "VECTOR_FLOAT",
                "dimensions": dimension,
            },
            {"name": "metadata", "dataType": "JSON"},
        ]
        status_code, response = self._client.create_table(
            table_name=self._collection_name, table_fields=fields
        )
        if status_code != 200:
            self._handle_error(msg=response["message"])
        self._collection_created = True
        logger.debug(f"Successfully created collection: {self._collection_name}")

    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """将节点添加到Epsilla向量存储中。

Args:
    nodes: List[BaseNode]: 带有嵌入的节点列表

Returns:
    List[str]: 插入的id列表。
"""
        # If the collection doesn't exist yet, create the collection
        if not self._collection_created and len(nodes) > 0:
            dimension = len(nodes[0].get_embedding())
            self._create_collection(dimension)

        elif len(nodes) == 0:
            return []

        ids = []
        records = []
        for node in nodes:
            ids.append(node.node_id)
            text = node.get_content(metadata_mode=MetadataMode.NONE)
            metadata_dict = node_to_metadata_dict(node, remove_text=True)
            metadata = metadata_dict["_node_content"]
            record = {
                "id": node.node_id,
                DEFAULT_DOC_ID_KEY: node.ref_doc_id,
                DEFAULT_TEXT_KEY: text,
                DEFAULT_EMBEDDING_KEY: node.get_embedding(),
                "metadata": metadata,
            }
            records.append(record)

        status_code, response = self._client.insert(
            table_name=self._collection_name, records=records
        )
        if status_code != 200:
            self._handle_error(msg=response["message"])

        return ids

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """使用ref_doc_id删除节点。

Args:
    ref_doc_id(str):要删除的文档的doc_id。
"""
        raise NotImplementedError("Delete with filtering will be coming soon.")

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """查询前k个最相似节点的索引。

Args:
    query(VectorStoreQuery):查询。

Returns:
    向量存储查询结果。
"""
        if not self._collection_created:
            raise ValueError("Please initialize a collection first.")

        if query.mode != VectorStoreQueryMode.DEFAULT:
            raise NotImplementedError(f"Epsilla does not support {query.mode} yet.")

        if query.filters is not None:
            raise NotImplementedError("Epsilla does not support Metadata filters yet.")

        if query.doc_ids is not None and len(query.doc_ids) > 0:
            raise NotImplementedError("Epsilla does not support filters yet.")

        status_code, response = self._client.query(
            table_name=self._collection_name,
            query_field=DEFAULT_EMBEDDING_KEY,
            query_vector=query.query_embedding,
            limit=query.similarity_top_k,
            with_distance=True,
        )
        if status_code != 200:
            self._handle_error(msg=response["message"])

        results = response["result"]
        logger.debug(
            f"Successfully searched embedding in collection: {self._collection_name}"
            f" Num Results: {len(results)}"
        )

        nodes = []
        similarities = []
        ids = []
        for res in results:
            try:
                node = metadata_dict_to_node({"_node_content": res["metadata"]})
                node.text = res[DEFAULT_TEXT_KEY]
            except Exception:
                # NOTE: deprecated legacy logic for backward compatibility
                metadata, node_info, relationships = legacy_metadata_dict_to_node(
                    res["metadata"]
                )
                node = TextNode(
                    id=res["id"],
                    text=res[DEFAULT_TEXT_KEY],
                    metadata=metadata,
                    start_char_idx=node_info.get("start", None),
                    end_char_idx=node_info.get("end", None),
                    relationships=relationships,
                )
            nodes.append(node)
            similarities.append(res["@distance"])
            ids.append(res["id"])

        return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)

client property #

client: Any

返回Epsilla客户端。

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

将节点添加到Epsilla向量存储中。

Parameters:

Name Type Description Default
nodes List[BaseNode]

List[BaseNode]: 带有嵌入的节点列表

required

Returns:

Type Description
List[str]

List[str]: 插入的id列表。

Source code in llama_index/vector_stores/epsilla/base.py
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """将节点添加到Epsilla向量存储中。

Args:
    nodes: List[BaseNode]: 带有嵌入的节点列表

Returns:
    List[str]: 插入的id列表。
"""
        # If the collection doesn't exist yet, create the collection
        if not self._collection_created and len(nodes) > 0:
            dimension = len(nodes[0].get_embedding())
            self._create_collection(dimension)

        elif len(nodes) == 0:
            return []

        ids = []
        records = []
        for node in nodes:
            ids.append(node.node_id)
            text = node.get_content(metadata_mode=MetadataMode.NONE)
            metadata_dict = node_to_metadata_dict(node, remove_text=True)
            metadata = metadata_dict["_node_content"]
            record = {
                "id": node.node_id,
                DEFAULT_DOC_ID_KEY: node.ref_doc_id,
                DEFAULT_TEXT_KEY: text,
                DEFAULT_EMBEDDING_KEY: node.get_embedding(),
                "metadata": metadata,
            }
            records.append(record)

        status_code, response = self._client.insert(
            table_name=self._collection_name, records=records
        )
        if status_code != 200:
            self._handle_error(msg=response["message"])

        return ids

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

使用ref_doc_id删除节点。

Source code in llama_index/vector_stores/epsilla/base.py
196
197
198
199
200
201
202
    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """使用ref_doc_id删除节点。

Args:
    ref_doc_id(str):要删除的文档的doc_id。
"""
        raise NotImplementedError("Delete with filtering will be coming soon.")

query #

query(
    query: VectorStoreQuery, **kwargs: Any
) -> VectorStoreQueryResult

查询前k个最相似节点的索引。

Returns:

Type Description
VectorStoreQueryResult

向量存储查询结果。

Source code in llama_index/vector_stores/epsilla/base.py
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """查询前k个最相似节点的索引。

Args:
    query(VectorStoreQuery):查询。

Returns:
    向量存储查询结果。
"""
        if not self._collection_created:
            raise ValueError("Please initialize a collection first.")

        if query.mode != VectorStoreQueryMode.DEFAULT:
            raise NotImplementedError(f"Epsilla does not support {query.mode} yet.")

        if query.filters is not None:
            raise NotImplementedError("Epsilla does not support Metadata filters yet.")

        if query.doc_ids is not None and len(query.doc_ids) > 0:
            raise NotImplementedError("Epsilla does not support filters yet.")

        status_code, response = self._client.query(
            table_name=self._collection_name,
            query_field=DEFAULT_EMBEDDING_KEY,
            query_vector=query.query_embedding,
            limit=query.similarity_top_k,
            with_distance=True,
        )
        if status_code != 200:
            self._handle_error(msg=response["message"])

        results = response["result"]
        logger.debug(
            f"Successfully searched embedding in collection: {self._collection_name}"
            f" Num Results: {len(results)}"
        )

        nodes = []
        similarities = []
        ids = []
        for res in results:
            try:
                node = metadata_dict_to_node({"_node_content": res["metadata"]})
                node.text = res[DEFAULT_TEXT_KEY]
            except Exception:
                # NOTE: deprecated legacy logic for backward compatibility
                metadata, node_info, relationships = legacy_metadata_dict_to_node(
                    res["metadata"]
                )
                node = TextNode(
                    id=res["id"],
                    text=res[DEFAULT_TEXT_KEY],
                    metadata=metadata,
                    start_char_idx=node_info.get("start", None),
                    end_char_idx=node_info.get("end", None),
                    relationships=relationships,
                )
            nodes.append(node)
            similarities.append(res["@distance"])
            ids.append(res["id"])

        return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)