Skip to content

Tair

TairVectorStore #

Bases: BasePydanticVectorStore

初始化TairVectorStore。

有两种索引类型可用:FLAT和HNSW。

HNSW的索引参数包括: - ef_construct - M - ef_search

这些参数的详细信息可以在这里找到: https://www.alibabacloud.com/help/en/tair/latest/tairvector#section-c76-ull-5mk

Parameters:

Name Type Description Default
index_name str

索引的名称。

required
index_type str

索引的类型。默认为'HNSW'。

'HNSW'
index_args Dict[str, Any]

索引的参数。默认为None。

None
tair_url str

Tair实例的URL。

required
overwrite bool

如果索引已经存在,是否覆盖。默认为False。

False
kwargs Any

传递给Tair客户端的额外参数。

{}
异常

ValueError: 如果未安装tair-py ValueError: 如果连接到Tair实例失败

示例

pip install llama-index-vector-stores-tair

from llama_index.core.vector_stores.tair import TairVectorStore

# 创建一个TairVectorStore
vector_store = TairVectorStore(
    tair_url="redis://{username}:{password}@r-bp****************.redis.rds.aliyuncs.com:{port}",
    index_name="my_index",
    index_type="HNSW",
    index_args={"M": 16, "ef_construct": 200},
    overwrite=True
)
Source code in llama_index/vector_stores/tair/base.py
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
class TairVectorStore(BasePydanticVectorStore):
    """初始化TairVectorStore。

    有两种索引类型可用:FLAT和HNSW。

    HNSW的索引参数包括:
        - ef_construct
        - M
        - ef_search

    这些参数的详细信息可以在这里找到:
    https://www.alibabacloud.com/help/en/tair/latest/tairvector#section-c76-ull-5mk

    Args:
        index_name (str): 索引的名称。
        index_type (str): 索引的类型。默认为'HNSW'。
        index_args (Dict[str, Any]): 索引的参数。默认为None。
        tair_url (str): Tair实例的URL。
        overwrite (bool): 如果索引已经存在,是否覆盖。默认为False。
        kwargs (Any): 传递给Tair客户端的额外参数。

    异常:
        ValueError: 如果未安装tair-py
        ValueError: 如果连接到Tair实例失败

    示例:
        `pip install llama-index-vector-stores-tair`

        ```python
        from llama_index.core.vector_stores.tair import TairVectorStore

        # 创建一个TairVectorStore
        vector_store = TairVectorStore(
            tair_url="redis://{username}:{password}@r-bp****************.redis.rds.aliyuncs.com:{port}",
            index_name="my_index",
            index_type="HNSW",
            index_args={"M": 16, "ef_construct": 200},
            overwrite=True
        )
        ```"""

    stores_text = True
    stores_node = True
    flat_metadata = False

    _tair_client: Tair = PrivateAttr()
    _index_name: str = PrivateAttr()
    _index_type: str = PrivateAttr()
    _metric_type: str = PrivateAttr()
    _overwrite: bool = PrivateAttr()
    _index_args: Dict[str, Any] = PrivateAttr()
    _query_args: Dict[str, Any] = PrivateAttr()
    _dim: int = PrivateAttr()

    def __init__(
        self,
        tair_url: str,
        index_name: str,
        index_type: str = "HNSW",
        index_args: Optional[Dict[str, Any]] = None,
        overwrite: bool = False,
        **kwargs: Any,
    ) -> None:
        try:
            self._tair_client = Tair.from_url(tair_url, **kwargs)
        except ValueError as e:
            raise ValueError(f"Tair failed to connect: {e}")

        # index identifiers
        self._index_name = index_name
        self._index_type = index_type
        self._metric_type = "L2"
        self._overwrite = overwrite
        self._index_args = {}
        self._query_args = {}
        if index_type == "HNSW":
            if index_args is not None:
                ef_construct = index_args.get("ef_construct", 500)
                M = index_args.get("M", 24)
                ef_search = index_args.get("ef_search", 400)
            else:
                ef_construct = 500
                M = 24
                ef_search = 400

            self._index_args = {"ef_construct": ef_construct, "M": M}
            self._query_args = {"ef_search": ef_search}

    @classmethod
    def class_name(cls) -> str:
        """类名。"""
        return "TairVectorStore"

    @property
    def client(self) -> "Tair":
        """返回Tair客户端实例。"""
        return self._tair_client

    def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
        """将节点添加到索引中。

Args:
    节点(List[BaseNode]):带有嵌入的节点列表

Returns:
    List[str]:添加到索引中的文档的id列表。
"""
        # check to see if empty document list was passed
        if len(nodes) == 0:
            return []

        # set vector dim for creation if index doesn't exist
        self._dim = len(nodes[0].get_embedding())

        if self._index_exists():
            if self._overwrite:
                self.delete_index()
                self._create_index()
            else:
                logging.info(f"Adding document to existing index {self._index_name}")
        else:
            self._create_index()

        ids = []
        for node in nodes:
            attributes = {
                "id": node.node_id,
                "doc_id": node.ref_doc_id,
                "text": node.get_content(metadata_mode=MetadataMode.NONE),
            }
            metadata_dict = node_to_metadata_dict(
                node, remove_text=True, flat_metadata=self.flat_metadata
            )
            attributes.update(metadata_dict)

            ids.append(node.node_id)
            self._tair_client.tvs_hset(
                self._index_name,
                f"{node.ref_doc_id}#{node.node_id}",
                vector=node.get_embedding(),
                is_binary=False,
                **attributes,
            )

        _logger.info(f"Added {len(ids)} documents to index {self._index_name}")
        return ids

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """删除一个文档。

Args:
    doc_id (str): 文档id
"""
        iter = self._tair_client.tvs_scan(self._index_name, "%s#*" % ref_doc_id)
        for k in iter:
            self._tair_client.tvs_del(self._index_name, k)

    def delete_index(self) -> None:
        """删除索引和所有文档。"""
        _logger.info(f"Deleting index {self._index_name}")
        self._tair_client.tvs_del_index(self._index_name)

    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """查询索引。

Args:
    query(VectorStoreQuery):查询对象

Returns:
    VectorStoreQueryResult:查询结果

引发:
    ValueError:如果query.query_embedding为None。
"""
        filter_expr = None
        if query.filters is not None:
            filter_expr = _to_filter_expr(query.filters)

        if not query.query_embedding:
            raise ValueError("Query embedding is required for querying.")

        _logger.info(f"Querying index {self._index_name}")

        query_args = self._query_args
        if self._index_type == "HNSW" and "ef_search" in kwargs:
            query_args["ef_search"] = kwargs["ef_search"]

        results = self._tair_client.tvs_knnsearch(
            self._index_name,
            query.similarity_top_k,
            query.query_embedding,
            False,
            filter_str=filter_expr,
            **query_args,
        )
        results = [(k.decode(), float(s)) for k, s in results]

        ids = []
        nodes = []
        scores = []
        pipe = self._tair_client.pipeline(transaction=False)
        for key, score in results:
            scores.append(score)
            pipe.tvs_hmget(self._index_name, key, "id", "doc_id", "text")
        metadatas = pipe.execute()
        for i, m in enumerate(metadatas):
            # TODO: properly get the _node_conent
            doc_id = m[0].decode()
            node = TextNode(
                text=m[2].decode(),
                id_=doc_id,
                embedding=None,
                relationships={
                    NodeRelationship.SOURCE: RelatedNodeInfo(node_id=m[1].decode())
                },
            )
            ids.append(doc_id)
            nodes.append(node)
        _logger.info(f"Found {len(nodes)} results for query with id {ids}")

        return VectorStoreQueryResult(nodes=nodes, ids=ids, similarities=scores)

    def _create_index(self) -> None:
        _logger.info(f"Creating index {self._index_name}")
        self._tair_client.tvs_create_index(
            self._index_name,
            self._dim,
            distance_type=self._metric_type,
            index_type=self._index_type,
            data_type=tairvector.DataType.Float32,
            **self._index_args,
        )

    def _index_exists(self) -> bool:
        index = self._tair_client.tvs_get_index(self._index_name)
        return index is not None

client property #

client: Tair

返回Tair客户端实例。

class_name classmethod #

class_name() -> str

类名。

Source code in llama_index/vector_stores/tair/base.py
128
129
130
131
@classmethod
def class_name(cls) -> str:
    """类名。"""
    return "TairVectorStore"

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

将节点添加到索引中。

Returns:

Type Description
List[str]

List[str]:添加到索引中的文档的id列表。

Source code in llama_index/vector_stores/tair/base.py
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
        """将节点添加到索引中。

Args:
    节点(List[BaseNode]):带有嵌入的节点列表

Returns:
    List[str]:添加到索引中的文档的id列表。
"""
        # check to see if empty document list was passed
        if len(nodes) == 0:
            return []

        # set vector dim for creation if index doesn't exist
        self._dim = len(nodes[0].get_embedding())

        if self._index_exists():
            if self._overwrite:
                self.delete_index()
                self._create_index()
            else:
                logging.info(f"Adding document to existing index {self._index_name}")
        else:
            self._create_index()

        ids = []
        for node in nodes:
            attributes = {
                "id": node.node_id,
                "doc_id": node.ref_doc_id,
                "text": node.get_content(metadata_mode=MetadataMode.NONE),
            }
            metadata_dict = node_to_metadata_dict(
                node, remove_text=True, flat_metadata=self.flat_metadata
            )
            attributes.update(metadata_dict)

            ids.append(node.node_id)
            self._tair_client.tvs_hset(
                self._index_name,
                f"{node.ref_doc_id}#{node.node_id}",
                vector=node.get_embedding(),
                is_binary=False,
                **attributes,
            )

        _logger.info(f"Added {len(ids)} documents to index {self._index_name}")
        return ids

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

删除一个文档。

Parameters:

Name Type Description Default
doc_id str

文档id

required
Source code in llama_index/vector_stores/tair/base.py
187
188
189
190
191
192
193
194
195
    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """删除一个文档。

Args:
    doc_id (str): 文档id
"""
        iter = self._tair_client.tvs_scan(self._index_name, "%s#*" % ref_doc_id)
        for k in iter:
            self._tair_client.tvs_del(self._index_name, k)

delete_index #

delete_index() -> None

删除索引和所有文档。

Source code in llama_index/vector_stores/tair/base.py
197
198
199
200
def delete_index(self) -> None:
    """删除索引和所有文档。"""
    _logger.info(f"Deleting index {self._index_name}")
    self._tair_client.tvs_del_index(self._index_name)

query #

query(
    query: VectorStoreQuery, **kwargs: Any
) -> VectorStoreQueryResult

查询索引。

Returns:

Type Description
VectorStoreQueryResult

VectorStoreQueryResult:查询结果

引发: ValueError:如果query.query_embedding为None。

Source code in llama_index/vector_stores/tair/base.py
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
        """查询索引。

Args:
    query(VectorStoreQuery):查询对象

Returns:
    VectorStoreQueryResult:查询结果

引发:
    ValueError:如果query.query_embedding为None。
"""
        filter_expr = None
        if query.filters is not None:
            filter_expr = _to_filter_expr(query.filters)

        if not query.query_embedding:
            raise ValueError("Query embedding is required for querying.")

        _logger.info(f"Querying index {self._index_name}")

        query_args = self._query_args
        if self._index_type == "HNSW" and "ef_search" in kwargs:
            query_args["ef_search"] = kwargs["ef_search"]

        results = self._tair_client.tvs_knnsearch(
            self._index_name,
            query.similarity_top_k,
            query.query_embedding,
            False,
            filter_str=filter_expr,
            **query_args,
        )
        results = [(k.decode(), float(s)) for k, s in results]

        ids = []
        nodes = []
        scores = []
        pipe = self._tair_client.pipeline(transaction=False)
        for key, score in results:
            scores.append(score)
            pipe.tvs_hmget(self._index_name, key, "id", "doc_id", "text")
        metadatas = pipe.execute()
        for i, m in enumerate(metadatas):
            # TODO: properly get the _node_conent
            doc_id = m[0].decode()
            node = TextNode(
                text=m[2].decode(),
                id_=doc_id,
                embedding=None,
                relationships={
                    NodeRelationship.SOURCE: RelatedNodeInfo(node_id=m[1].decode())
                },
            )
            ids.append(doc_id)
            nodes.append(node)
        _logger.info(f"Found {len(nodes)} results for query with id {ids}")

        return VectorStoreQueryResult(nodes=nodes, ids=ids, similarities=scores)