Skip to content

Txtai

txtai向量存储索引。

构建在现有向量存储之上的索引。

TxtaiVectorStore #

Bases: BasePydanticVectorStore

txtai向量存储。

嵌入向量被存储在txtai索引中。

在查询时,索引使用txtai查询前k个嵌入向量,并返回相应的索引。

Parameters:

Name Type Description Default
txtai_index ANN

txtai索引实例

required
Source code in llama_index/vector_stores/txtai.py
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
class TxtaiVectorStore(BasePydanticVectorStore):
    """txtai向量存储。

    嵌入向量被存储在txtai索引中。

    在查询时,索引使用txtai查询前k个嵌入向量,并返回相应的索引。

    Args:
        txtai_index (txtai.ann.ANN): txtai索引实例"""

    stores_text: bool = False

    _txtai_index = PrivateAttr()

    def __init__(
        self,
        txtai_index: Any,
    ) -> None:
        """初始化参数。"""
        try:
            import txtai
        except ImportError:
            raise ImportError(IMPORT_ERROR_MSG)

        self._txtai_index = cast(txtai.ann.ANN, txtai_index)

        super().__init__()

    @classmethod
    def from_persist_dir(
        cls,
        persist_dir: str = DEFAULT_PERSIST_DIR,
        fs: Optional[fsspec.AbstractFileSystem] = None,
    ) -> "TxtaiVectorStore":
        persist_path = os.path.join(
            persist_dir,
            f"{DEFAULT_VECTOR_STORE}{NAMESPACE_SEP}{DEFAULT_PERSIST_FNAME}",
        )
        # only support local storage for now
        if fs and not isinstance(fs, LocalFileSystem):
            raise NotImplementedError("txtai only supports local storage for now.")
        return cls.from_persist_path(persist_path=persist_path, fs=None)

    @classmethod
    def from_persist_path(
        cls,
        persist_path: str,
        fs: Optional[fsspec.AbstractFileSystem] = None,
    ) -> "TxtaiVectorStore":
        try:
            import txtai
        except ImportError:
            raise ImportError(IMPORT_ERROR_MSG)

        if fs and not isinstance(fs, LocalFileSystem):
            raise NotImplementedError("txtai only supports local storage for now.")

        if not os.path.exists(persist_path):
            raise ValueError(f"No existing {__name__} found at {persist_path}.")

        logger.info(f"Loading {__name__} config from {persist_path}.")
        parent_directory = Path(persist_path).parent
        config_path = parent_directory / "config.json"
        jsonconfig = config_path.exists()
        # Determine if config is json or pickle
        config_path = config_path if jsonconfig else parent_directory / "config"
        # Load configuration
        with open(config_path, "r" if jsonconfig else "rb") as f:
            config = json.load(f) if jsonconfig else pickle.load(f)

        logger.info(f"Loading {__name__} from {persist_path}.")
        txtai_index = txtai.ann.ANNFactory.create(config)
        txtai_index.load(persist_path)
        return cls(txtai_index=txtai_index)

    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """将节点添加到索引中。

Args:
    节点: List[BaseNode]: 带有嵌入的节点列表
"""
        text_embedding_np = np.array(
            [node.get_embedding() for node in nodes], dtype="float32"
        )

        # Check if the ann index is already created
        # If not create the index with node embeddings
        if self._txtai_index.backend is None:
            self._txtai_index.index(text_embedding_np)
        else:
            self._txtai_index.append(text_embedding_np)

        indx_size = self._txtai_index.count()
        return [str(idx) for idx in range(indx_size - len(nodes) + 1, indx_size + 1)]

    @property
    def client(self) -> Any:
        """返回txtai索引。"""
        return self._txtai_index

    def persist(
        self,
        persist_path: str = DEFAULT_PERSIST_PATH,
        fs: Optional[fsspec.AbstractFileSystem] = None,
    ) -> None:
        """保存到文件。

这个方法将向磁盘保存向量存储。

Args:
    persist_path (str): 文件的保存路径。
"""
        if fs and not isinstance(fs, LocalFileSystem):
            raise NotImplementedError("txtai only supports local storage for now.")

        dirpath = Path(persist_path).parent
        dirpath.mkdir(exist_ok=True)

        jsonconfig = self._txtai_index.config.get("format", "pickle") == "json"
        # Determine if config is json or pickle
        config_path = dirpath / "config.json" if jsonconfig else dirpath / "config"

        # Write configuration
        with open(
            config_path,
            "w" if jsonconfig else "wb",
            encoding="utf-8" if jsonconfig else None,
        ) as f:
            if jsonconfig:
                # Write config as JSON
                json.dump(self._txtai_index.config, f, default=str)
            else:
                from txtai.version import __pickle__

                # Write config as pickle format
                pickle.dump(self._txtai_index.config, f, protocol=__pickle__)

        self._txtai_index.save(persist_path)

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """使用ref_doc_id删除节点。

Args:
    ref_doc_id(str):要删除的文档的doc_id。
"""
        self._txtai_index.delete([int(ref_doc_id)])

    def query(
        self,
        query: VectorStoreQuery,
        **kwargs: Any,
    ) -> VectorStoreQueryResult:
        """查询前k个最相似节点的索引。

Args:
    query (VectorStoreQuery): 在索引中搜索的查询
"""
        if query.filters is not None:
            raise ValueError("Metadata filters not implemented for txtai yet.")

        query_embedding = cast(List[float], query.query_embedding)
        query_embedding_np = np.array(query_embedding, dtype="float32")[np.newaxis, :]
        search_result = self._txtai_index.search(
            query_embedding_np, query.similarity_top_k
        )[0]
        # if empty, then return an empty response
        if len(search_result) == 0:
            return VectorStoreQueryResult(similarities=[], ids=[])

        filtered_dists = []
        filtered_node_idxs = []
        for dist, idx in search_result:
            if idx < 0:
                continue
            filtered_dists.append(dist)
            filtered_node_idxs.append(str(idx))

        return VectorStoreQueryResult(
            similarities=filtered_dists, ids=filtered_node_idxs
        )

client property #

client: Any

返回txtai索引。

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

将节点添加到索引中。

Parameters:

Name Type Description Default
节点

List[BaseNode]: 带有嵌入的节点列表

required
Source code in llama_index/vector_stores/txtai.py
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        """将节点添加到索引中。

Args:
    节点: List[BaseNode]: 带有嵌入的节点列表
"""
        text_embedding_np = np.array(
            [node.get_embedding() for node in nodes], dtype="float32"
        )

        # Check if the ann index is already created
        # If not create the index with node embeddings
        if self._txtai_index.backend is None:
            self._txtai_index.index(text_embedding_np)
        else:
            self._txtai_index.append(text_embedding_np)

        indx_size = self._txtai_index.count()
        return [str(idx) for idx in range(indx_size - len(nodes) + 1, indx_size + 1)]

persist #

persist(
    persist_path: str = DEFAULT_PERSIST_PATH,
    fs: Optional[AbstractFileSystem] = None,
) -> None

保存到文件。

这个方法将向磁盘保存向量存储。

Parameters:

Name Type Description Default
persist_path str

文件的保存路径。

DEFAULT_PERSIST_PATH
Source code in llama_index/vector_stores/txtai.py
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    def persist(
        self,
        persist_path: str = DEFAULT_PERSIST_PATH,
        fs: Optional[fsspec.AbstractFileSystem] = None,
    ) -> None:
        """保存到文件。

这个方法将向磁盘保存向量存储。

Args:
    persist_path (str): 文件的保存路径。
"""
        if fs and not isinstance(fs, LocalFileSystem):
            raise NotImplementedError("txtai only supports local storage for now.")

        dirpath = Path(persist_path).parent
        dirpath.mkdir(exist_ok=True)

        jsonconfig = self._txtai_index.config.get("format", "pickle") == "json"
        # Determine if config is json or pickle
        config_path = dirpath / "config.json" if jsonconfig else dirpath / "config"

        # Write configuration
        with open(
            config_path,
            "w" if jsonconfig else "wb",
            encoding="utf-8" if jsonconfig else None,
        ) as f:
            if jsonconfig:
                # Write config as JSON
                json.dump(self._txtai_index.config, f, default=str)
            else:
                from txtai.version import __pickle__

                # Write config as pickle format
                pickle.dump(self._txtai_index.config, f, protocol=__pickle__)

        self._txtai_index.save(persist_path)

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

使用ref_doc_id删除节点。

Source code in llama_index/vector_stores/txtai.py
183
184
185
186
187
188
189
    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """使用ref_doc_id删除节点。

Args:
    ref_doc_id(str):要删除的文档的doc_id。
"""
        self._txtai_index.delete([int(ref_doc_id)])

query #

query(
    query: VectorStoreQuery, **kwargs: Any
) -> VectorStoreQueryResult

查询前k个最相似节点的索引。

Parameters:

Name Type Description Default
query VectorStoreQuery

在索引中搜索的查询

required
Source code in llama_index/vector_stores/txtai.py
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def query(
        self,
        query: VectorStoreQuery,
        **kwargs: Any,
    ) -> VectorStoreQueryResult:
        """查询前k个最相似节点的索引。

Args:
    query (VectorStoreQuery): 在索引中搜索的查询
"""
        if query.filters is not None:
            raise ValueError("Metadata filters not implemented for txtai yet.")

        query_embedding = cast(List[float], query.query_embedding)
        query_embedding_np = np.array(query_embedding, dtype="float32")[np.newaxis, :]
        search_result = self._txtai_index.search(
            query_embedding_np, query.similarity_top_k
        )[0]
        # if empty, then return an empty response
        if len(search_result) == 0:
            return VectorStoreQueryResult(similarities=[], ids=[])

        filtered_dists = []
        filtered_node_idxs = []
        for dist, idx in search_result:
            if idx < 0:
                continue
            filtered_dists.append(dist)
            filtered_node_idxs.append(str(idx))

        return VectorStoreQueryResult(
            similarities=filtered_dists, ids=filtered_node_idxs
        )