Bases: BaseToolSpec
OpenAPI工具。
此工具可用于解析OpenAPI规范的端点和操作
使用RequestsToolSpec自动化对openapi服务器的请求
Source code in llama_index/tools/openapi/base.py
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112 | class OpenAPIToolSpec(BaseToolSpec):
"""OpenAPI工具。
此工具可用于解析OpenAPI规范的端点和操作
使用RequestsToolSpec自动化对openapi服务器的请求"""
spec_functions = ["load_openapi_spec"]
def __init__(self, spec: Optional[dict] = None, url: Optional[str] = None):
import yaml
if spec and url:
raise ValueError("Only provide one of OpenAPI dict or url")
elif spec:
pass
elif url:
response = requests.get(url).text
spec = yaml.safe_load(response)
else:
raise ValueError("You must provide a url or OpenAPI spec as a dict")
parsed_spec = self.process_api_spec(spec)
self.spec = Document(text=str(parsed_spec))
def load_openapi_spec(self) -> List[Document]:
"""你是一个专门设计用于通过向基于OpenAPI规范的API发出网络请求来检索信息的AI代理。
以下是一份逐步指南,以帮助你回答问题:
1. 确定发出请求所需的基本URL
2. 确定必要的路径,以解决问题
3. 查找发出请求所需的参数
4. 执行必要的请求以获得答案
返回:
文档:文档对象的列表。
"""
return [self.spec]
def process_api_spec(self, spec: dict) -> dict:
"""对OpenAPI规范进行简化和减少。
目标是为了创建更简洁和高效的表示形式,以便进行检索。
"""
def reduce_details(details: dict) -> dict:
reduced = {}
if details.get("description"):
reduced["description"] = details.get("description")
if details.get("parameters"):
reduced["parameters"] = [
param
for param in details.get("parameters", [])
if param.get("required")
]
if "200" in details["responses"]:
reduced["responses"] = details["responses"]["200"]
return reduced
def dereference_openapi(openapi_doc):
"""解引用一个Swagger/OpenAPI文档,通过解析所有的$ref指针。"""
try:
import jsonschema
except ImportError:
raise ImportError(
"The jsonschema library is required to parse OpenAPI documents. "
"Please install it with `pip install jsonschema`."
)
resolver = jsonschema.RefResolver.from_schema(openapi_doc)
def _dereference(obj):
if isinstance(obj, dict):
if "$ref" in obj:
with resolver.resolving(obj["$ref"]) as resolved:
return _dereference(resolved)
return {k: _dereference(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [_dereference(item) for item in obj]
else:
return obj
return _dereference(openapi_doc)
spec = dereference_openapi(spec)
endpoints = []
for route, operations in spec["paths"].items():
for operation, details in operations.items():
if operation in ["get", "post", "patch"]:
endpoint_name = f"{operation.upper()} {route}"
description = details.get("description")
endpoints.append(
(endpoint_name, description, reduce_details(details))
)
return {
"servers": spec["servers"],
"description": spec["info"].get("description"),
"endpoints": endpoints,
}
|
你是一个专门设计用于通过向基于OpenAPI规范的API发出网络请求来检索信息的AI代理。
以下是一份逐步指南,以帮助你回答问题:
-
确定发出请求所需的基本URL
-
确定必要的路径,以解决问题
-
查找发出请求所需的参数
-
执行必要的请求以获得答案
返回:
文档:文档对象的列表。
Source code in llama_index/tools/openapi/base.py
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 | def load_openapi_spec(self) -> List[Document]:
"""你是一个专门设计用于通过向基于OpenAPI规范的API发出网络请求来检索信息的AI代理。
以下是一份逐步指南,以帮助你回答问题:
1. 确定发出请求所需的基本URL
2. 确定必要的路径,以解决问题
3. 查找发出请求所需的参数
4. 执行必要的请求以获得答案
返回:
文档:文档对象的列表。
"""
return [self.spec]
|
process_api_spec(spec: dict) -> dict
对OpenAPI规范进行简化和减少。
目标是为了创建更简洁和高效的表示形式,以便进行检索。
Source code in llama_index/tools/openapi/base.py
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112 | def process_api_spec(self, spec: dict) -> dict:
"""对OpenAPI规范进行简化和减少。
目标是为了创建更简洁和高效的表示形式,以便进行检索。
"""
def reduce_details(details: dict) -> dict:
reduced = {}
if details.get("description"):
reduced["description"] = details.get("description")
if details.get("parameters"):
reduced["parameters"] = [
param
for param in details.get("parameters", [])
if param.get("required")
]
if "200" in details["responses"]:
reduced["responses"] = details["responses"]["200"]
return reduced
def dereference_openapi(openapi_doc):
"""解引用一个Swagger/OpenAPI文档,通过解析所有的$ref指针。"""
try:
import jsonschema
except ImportError:
raise ImportError(
"The jsonschema library is required to parse OpenAPI documents. "
"Please install it with `pip install jsonschema`."
)
resolver = jsonschema.RefResolver.from_schema(openapi_doc)
def _dereference(obj):
if isinstance(obj, dict):
if "$ref" in obj:
with resolver.resolving(obj["$ref"]) as resolved:
return _dereference(resolved)
return {k: _dereference(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [_dereference(item) for item in obj]
else:
return obj
return _dereference(openapi_doc)
spec = dereference_openapi(spec)
endpoints = []
for route, operations in spec["paths"].items():
for operation, details in operations.items():
if operation in ["get", "post", "patch"]:
endpoint_name = f"{operation.upper()} {route}"
description = details.get("description")
endpoints.append(
(endpoint_name, description, reduce_details(details))
)
return {
"servers": spec["servers"],
"description": spec["info"].get("description"),
"endpoints": endpoints,
}
|