DashVector Reader¶
如果您在colab上打开这个笔记本,您可能需要安装LlamaIndex 🦙。
In [ ]:
Copied!
%pip install llama-index-readers-dashvector
%pip install llama-index-readers-dashvector
In [ ]:
Copied!
!pip install llama-index
!pip install llama-index
In [ ]:
Copied!
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
In [ ]:
Copied!
api_key = os.environ["DASHVECTOR_API_KEY"]
api_key = os.environ["DASHVECTOR_API_KEY"]
In [ ]:
Copied!
from llama_index.readers.dashvector import DashVectorReader
reader = DashVectorReader(api_key=api_key)
from llama_index.readers.dashvector import DashVectorReader
reader = DashVectorReader(api_key=api_key)
In [ ]:
Copied!
import numpy as np
# id_to_text_map指定了从DashVector中指定的ID到文本的映射。
id_to_text_map = {
"id1": "文本块1",
"id2": "文本块2",
}
# query_vector是查询向量的嵌入表示
query_vector = [n1, n2, n3, ...]
import numpy as np
# id_to_text_map指定了从DashVector中指定的ID到文本的映射。
id_to_text_map = {
"id1": "文本块1",
"id2": "文本块2",
}
# query_vector是查询向量的嵌入表示
query_vector = [n1, n2, n3, ...]
In [ ]:
Copied!
# 注意:必需的参数是index_name、id_to_text_map、vector。
# 另外,我们可以传递符合SQL语法的元数据过滤器。
# 有关更多详细信息,请参阅Python客户端:https://pypi.org/project/dashvector/。
documents = reader.load_data(
collection_name="quickstart",
id_to_text_map=id_to_text_map,
top_k=3,
vector=query_vector,
filter="key = 'value'",
)
# 注意:必需的参数是index_name、id_to_text_map、vector。
# 另外,我们可以传递符合SQL语法的元数据过滤器。
# 有关更多详细信息,请参阅Python客户端:https://pypi.org/project/dashvector/。
documents = reader.load_data(
collection_name="quickstart",
id_to_text_map=id_to_text_map,
top_k=3,
vector=query_vector,
filter="key = 'value'",
)
创建索引¶
In [ ]:
Copied!
from llama_index.core import ListIndex
from IPython.display import Markdown, display
index = ListIndex.from_documents(documents)
from llama_index.core import ListIndex
from IPython.display import Markdown, display
index = ListIndex.from_documents(documents)
In [ ]:
Copied!
# 将日志级别设置为DEBUG,以获得更详细的输出
query_engine = index.as_query_engine()
response = query_engine.query("<query_text>")
# 将日志级别设置为DEBUG,以获得更详细的输出
query_engine = index.as_query_engine()
response = query_engine.query("")
In [ ]:
Copied!
display(Markdown(f"<b>{response}</b>"))
display(Markdown(f"{response}"))