Firestore演示¶
本指南向您展示如何直接使用由Google Firestore支持的
DocumentStore
抽象。通过将节点放入文档存储中,这使您能够在相同的基础文档存储上定义多个索引,而不是在索引之间复制数据。
如果您在Colab上打开这个笔记本,您可能需要安装LlamaIndex 🦙。
In [ ]:
Copied!
%pip install llama-index-storage-docstore-firestore
%pip install llama-index-storage-kvstore-firestore
%pip install llama-index-storage-index-store-firestore
%pip install llama-index-llms-openai
%pip install llama-index-storage-docstore-firestore
%pip install llama-index-storage-kvstore-firestore
%pip install llama-index-storage-index-store-firestore
%pip install llama-index-llms-openai
In [ ]:
Copied!
!pip install llama-index
!pip install llama-index
In [ ]:
Copied!
import nest_asyncio
nest_asyncio.apply()
import nest_asyncio
nest_asyncio.apply()
In [ ]:
Copied!
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
In [ ]:
Copied!
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex
from llama_index.core import SummaryIndex
from llama_index.core import ComposableGraph
from llama_index.llms.openai import OpenAI
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import Settings
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex
from llama_index.core import SummaryIndex
from llama_index.core import ComposableGraph
from llama_index.llms.openai import OpenAI
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import Settings
下载数据¶
In [ ]:
Copied!
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
加载文档¶
In [ ]:
Copied!
reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
解析到节点¶
In [ ]:
Copied!
from llama_index.core.node_parser import SentenceSplitter
nodes = SentenceSplitter().get_nodes_from_documents(documents)
from llama_index.core.node_parser import SentenceSplitter
nodes = SentenceSplitter().get_nodes_from_documents(documents)
添加到文档库¶
In [ ]:
Copied!
from llama_index.storage.kvstore.firestore import FirestoreKVStore
from llama_index.storage.docstore.firestore import FirestoreDocumentStore
from llama_index.storage.index_store.firestore import FirestoreIndexStore
from llama_index.storage.kvstore.firestore import FirestoreKVStore
from llama_index.storage.docstore.firestore import FirestoreDocumentStore
from llama_index.storage.index_store.firestore import FirestoreIndexStore
In [ ]:
Copied!
kvstore = FirestoreKVStore()
storage_context = StorageContext.from_defaults(
docstore=FirestoreDocumentStore(kvstore),
index_store=FirestoreIndexStore(kvstore),
)
kvstore = FirestoreKVStore()
storage_context = StorageContext.from_defaults(
docstore=FirestoreDocumentStore(kvstore),
index_store=FirestoreIndexStore(kvstore),
)
In [ ]:
Copied!
storage_context.docstore.add_documents(nodes)
storage_context.docstore.add_documents(nodes)
定义多个索引¶
每个索引使用相同的基础节点。
In [ ]:
Copied!
summary_index = SummaryIndex(nodes, storage_context=storage_context)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
In [ ]:
Copied!
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
In [ ]:
Copied!
keyword_table_index = SimpleKeywordTableIndex(
nodes, storage_context=storage_context
)
keyword_table_index = SimpleKeywordTableIndex(
nodes, storage_context=storage_context
)
In [ ]:
Copied!
# 注意:文档存储仍然具有相同的节点
len(storage_context.docstore.docs)
# 注意:文档存储仍然具有相同的节点
len(storage_context.docstore.docs)
测试保存和加载¶
In [ ]:
Copied!
# 注意:默认情况下,docstore和index_store会持久化到Firestore中
# 注意:这里只需要将简单的向量存储持久化到磁盘中
storage_context.persist()
# 注意:默认情况下,docstore和index_store会持久化到Firestore中
# 注意:这里只需要将简单的向量存储持久化到磁盘中
storage_context.persist()
In [ ]:
Copied!
# 记录索引ID
list_id = summary_index.index_id # 摘要索引ID
vector_id = vector_index.index_id # 向量索引ID
keyword_id = keyword_table_index.index_id # 关键词表索引ID
# 记录索引ID
list_id = summary_index.index_id # 摘要索引ID
vector_id = vector_index.index_id # 向量索引ID
keyword_id = keyword_table_index.index_id # 关键词表索引ID
In [ ]:
Copied!
from llama_index.core import load_index_from_storage
kvstore = FirestoreKVStore()
# 重新创建存储上下文
storage_context = StorageContext.from_defaults(
docstore=FirestoreDocumentStore(kvstore),
index_store=FirestoreIndexStore(kvstore),
)
# 加载索引
summary_index = load_index_from_storage(
storage_context=storage_context, index_id=list_id
)
vector_index = load_index_from_storage(
storage_context=storage_context, vector_id=vector_id
)
keyword_table_index = load_index_from_storage(
storage_context=storage_context, keyword_id=keyword_id
)
from llama_index.core import load_index_from_storage
kvstore = FirestoreKVStore()
# 重新创建存储上下文
storage_context = StorageContext.from_defaults(
docstore=FirestoreDocumentStore(kvstore),
index_store=FirestoreIndexStore(kvstore),
)
# 加载索引
summary_index = load_index_from_storage(
storage_context=storage_context, index_id=list_id
)
vector_index = load_index_from_storage(
storage_context=storage_context, vector_id=vector_id
)
keyword_table_index = load_index_from_storage(
storage_context=storage_context, keyword_id=keyword_id
)
测试一些查询语句¶
In [ ]:
Copied!
chatgpt = OpenAI(temperature=0, model="gpt-3.5-turbo")
Settings.llm = chatgpt
Settings.chunk_size = 1024
chatgpt = OpenAI(temperature=0, model="gpt-3.5-turbo")
Settings.llm = chatgpt
Settings.chunk_size = 1024
In [ ]:
Copied!
query_engine = summary_index.as_query_engine()
list_response = query_engine.query("What is a summary of this document?")
query_engine = summary_index.as_query_engine()
list_response = query_engine.query("What is a summary of this document?")
In [ ]:
Copied!
display_response(list_response)
display_response(list_response)
In [ ]:
Copied!
query_engine = vector_index.as_query_engine()
vector_response = query_engine.query("What did the author do growing up?")
query_engine = vector_index.as_query_engine()
vector_response = query_engine.query("What did the author do growing up?")
In [ ]:
Copied!
display_response(vector_response)
display_response(vector_response)
In [ ]:
Copied!
query_engine = keyword_table_index.as_query_engine()
keyword_response = query_engine.query(
"What did the author do after his time at YC?"
)
query_engine = keyword_table_index.as_query_engine()
keyword_response = query_engine.query(
"What did the author do after his time at YC?"
)
In [ ]:
Copied!
display_response(keyword_response)
display_response(keyword_response)