谷歌Gemini嵌入¶
如果您在colab上打开这个笔记本,您可能需要安装LlamaIndex 🦙。
In [ ]:
Copied!
%pip install llama-index-embeddings-gemini
%pip install llama-index-embeddings-gemini
In [ ]:
Copied!
!pip install llama-index 'google-generativeai>=0.3.0' matplotlib
!pip install llama-index 'google-generativeai>=0.3.0' matplotlib
In [ ]:
Copied!
import os
GOOGLE_API_KEY = "" # 在这里添加你的GOOGLE API密钥
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
import os
GOOGLE_API_KEY = "" # 在这里添加你的GOOGLE API密钥
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
In [ ]:
Copied!
# 导入
来自llama_index.embeddings.gemini的GeminiEmbedding
# 导入
来自llama_index.embeddings.gemini的GeminiEmbedding
In [ ]:
Copied!
# 获取API密钥并创建嵌入
model_name = "models/embedding-001"
embed_model = GeminiEmbedding(
model_name=model_name, api_key=GOOGLE_API_KEY, title="this is a document"
)
embeddings = embed_model.get_text_embedding("Google Gemini Embeddings.")
# 获取API密钥并创建嵌入
model_name = "models/embedding-001"
embed_model = GeminiEmbedding(
model_name=model_name, api_key=GOOGLE_API_KEY, title="this is a document"
)
embeddings = embed_model.get_text_embedding("Google Gemini Embeddings.")
/Users/haotianzhang/llama_index/venv/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html from .autonotebook import tqdm as notebook_tqdm
In [ ]:
Copied!
print(f"Dimension of embeddings: {len(embeddings)}")
print(f"Dimension of embeddings: {len(embeddings)}")
Dimension of embeddings: 768
In [ ]:
Copied!
embeddings[:5]
embeddings[:5]
Out[ ]:
[0.028174246, -0.0290093, -0.013280814, 0.008629, 0.025442218]
In [ ]:
Copied!
embeddings = embed_model.get_query_embedding("Google Gemini Embeddings.")
embeddings[:5]
embeddings = embed_model.get_query_embedding("Google Gemini Embeddings.")
embeddings[:5]
Out[ ]:
[0.028174246, -0.0290093, -0.013280814, 0.008629, 0.025442218]
In [ ]:
Copied!
embeddings = embed_model.get_text_embedding(
["Google Gemini Embeddings.", "Google is awesome."]
)
embeddings = embed_model.get_text_embedding(
["Google Gemini Embeddings.", "Google is awesome."]
)
In [ ]:
Copied!
print(f"Dimension of embeddings: {len(embeddings)}")
print(embeddings[0][:5])
print(embeddings[1][:5])
print(f"Dimension of embeddings: {len(embeddings)}")
print(embeddings[0][:5])
print(embeddings[1][:5])
Dimension of embeddings: 2 [0.028174246, -0.0290093, -0.013280814, 0.008629, 0.025442218] [0.009427786, -0.009968997, -0.03341217, -0.025396815, 0.03210592]
In [ ]:
Copied!
embedding = await embed_model.aget_text_embedding("Google Gemini Embeddings.")
print(embedding[:5])
embedding = await embed_model.aget_text_embedding("Google Gemini Embeddings.")
print(embedding[:5])
[0.028174246, -0.0290093, -0.013280814, 0.008629, 0.025442218]
In [ ]:
Copied!
embeddings = await embed_model.aget_text_embedding_batch(
[
"Google Gemini Embeddings.",
"Google is awesome.",
"Llamaindex is awesome.",
]
)
print(embeddings[0][:5])
print(embeddings[1][:5])
print(embeddings[2][:5])
embeddings = await embed_model.aget_text_embedding_batch(
[
"Google Gemini Embeddings.",
"Google is awesome.",
"Llamaindex is awesome.",
]
)
print(embeddings[0][:5])
print(embeddings[1][:5])
print(embeddings[2][:5])
[0.028174246, -0.0290093, -0.013280814, 0.008629, 0.025442218] [0.009427786, -0.009968997, -0.03341217, -0.025396815, 0.03210592] [0.013159992, -0.021570021, -0.060150445, -0.042500723, 0.041159637]
In [ ]:
Copied!
embedding = await embed_model.aget_query_embedding("Google Gemini Embeddings.")
print(embedding[:5])
embedding = await embed_model.aget_query_embedding("Google Gemini Embeddings.")
print(embedding[:5])
[0.028174246, -0.0290093, -0.013280814, 0.008629, 0.025442218]