灯笼向量存储(自动检索器)¶
本指南展示了如何在LlamaIndex中执行自动检索。
许多流行的向量数据库除了语义搜索的查询字符串外,还支持一组元数据过滤器。给定一个自然语言查询,我们首先使用LLM推断一组元数据过滤器以及传递给向量数据库的正确查询字符串(也可以为空)。然后对整个查询包进行针对向量数据库的执行。
这允许进行比top-k语义搜索更动态、更有表现力的检索形式。对于给定查询的相关上下文,可能只需要在元数据标签上进行过滤,或者需要在过滤集合内进行过滤+语义搜索的联合组合,或者只需要进行原始的语义搜索。
我们以灯笼为例进行演示,但自动检索也已在许多其他向量数据库中实现(例如Pinecone、Chroma、Weaviate等)。
如果您在colab上打开这个笔记本,您可能需要安装LlamaIndex 🦙。
In [ ]:
Copied!
%pip install llama-index-vector-stores-lantern
%pip install llama-index-vector-stores-lantern
In [ ]:
Copied!
!pip install llama-index psycopg2-binary asyncpg
!pip install llama-index psycopg2-binary asyncpg
In [ ]:
Copied!
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
In [ ]:
Copied!
# 设置OpenAIimport osos.environ["OPENAI_API_KEY"] = "<your-api-key>"import openaiopenai.api_key = os.environ["OPENAI_API_KEY"]
# 设置OpenAIimport osos.environ["OPENAI_API_KEY"] = ""import openaiopenai.api_key = os.environ["OPENAI_API_KEY"]
In [ ]:
Copied!
import psycopg2
from sqlalchemy import make_url
connection_string = "postgresql://postgres:postgres@localhost:5432"
url = make_url(connection_string)
db_name = "postgres"
conn = psycopg2.connect(connection_string)
conn.autocommit = True
import psycopg2
from sqlalchemy import make_url
connection_string = "postgresql://postgres:postgres@localhost:5432"
url = make_url(connection_string)
db_name = "postgres"
conn = psycopg2.connect(connection_string)
conn.autocommit = True
In [ ]:
Copied!
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.lantern import LanternVectorStore
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.lantern import LanternVectorStore
In [ ]:
Copied!
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text=(
"Michael Jordan is a retired professional basketball player,"
" widely regarded as one of the greatest basketball players of all"
" time."
),
metadata={
"category": "Sports",
"country": "United States",
},
),
TextNode(
text=(
"Angelina Jolie is an American actress, filmmaker, and"
" humanitarian. She has received numerous awards for her acting"
" and is known for her philanthropic work."
),
metadata={
"category": "Entertainment",
"country": "United States",
},
),
TextNode(
text=(
"Elon Musk is a business magnate, industrial designer, and"
" engineer. He is the founder, CEO, and lead designer of SpaceX,"
" Tesla, Inc., Neuralink, and The Boring Company."
),
metadata={
"category": "Business",
"country": "United States",
},
),
TextNode(
text=(
"Rihanna is a Barbadian singer, actress, and businesswoman. She"
" has achieved significant success in the music industry and is"
" known for her versatile musical style."
),
metadata={
"category": "Music",
"country": "Barbados",
},
),
TextNode(
text=(
"Cristiano Ronaldo is a Portuguese professional footballer who is"
" considered one of the greatest football players of all time. He"
" has won numerous awards and set multiple records during his"
" career."
),
metadata={
"category": "Sports",
"country": "Portugal",
},
),
]
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text=(
"Michael Jordan is a retired professional basketball player,"
" widely regarded as one of the greatest basketball players of all"
" time."
),
metadata={
"category": "Sports",
"country": "United States",
},
),
TextNode(
text=(
"Angelina Jolie is an American actress, filmmaker, and"
" humanitarian. She has received numerous awards for her acting"
" and is known for her philanthropic work."
),
metadata={
"category": "Entertainment",
"country": "United States",
},
),
TextNode(
text=(
"Elon Musk is a business magnate, industrial designer, and"
" engineer. He is the founder, CEO, and lead designer of SpaceX,"
" Tesla, Inc., Neuralink, and The Boring Company."
),
metadata={
"category": "Business",
"country": "United States",
},
),
TextNode(
text=(
"Rihanna is a Barbadian singer, actress, and businesswoman. She"
" has achieved significant success in the music industry and is"
" known for her versatile musical style."
),
metadata={
"category": "Music",
"country": "Barbados",
},
),
TextNode(
text=(
"Cristiano Ronaldo is a Portuguese professional footballer who is"
" considered one of the greatest football players of all time. He"
" has won numerous awards and set multiple records during his"
" career."
),
metadata={
"category": "Sports",
"country": "Portugal",
},
),
]
使用 Lantern Vector Store 构建向量索引¶
在这里,我们将数据加载到向量存储中。如上所述,每个节点的文本和元数据都将转换为 Lantern 中相应的表示。现在我们可以从 Lantern 对这些数据运行语义查询,也可以进行元数据过滤。
In [ ]:
Copied!
vector_store = LanternVectorStore.from_params( database=db_name, host=url.host, password=url.password, port=url.port, user=url.username, table_name="famous_people", embed_dim=1536, # openai embedding dimension m=16, # HNSW M parameter ef_construction=128, # HNSW ef construction parameter ef=64, # HNSW ef search parameter)storage_context = StorageContext.from_defaults(vector_store=vector_store)
vector_store = LanternVectorStore.from_params( database=db_name, host=url.host, password=url.password, port=url.port, user=url.username, table_name="famous_people", embed_dim=1536, # openai embedding dimension m=16, # HNSW M parameter ef_construction=128, # HNSW ef construction parameter ef=64, # HNSW ef search parameter)storage_context = StorageContext.from_defaults(vector_store=vector_store)
In [ ]:
Copied!
index = VectorStoreIndex(nodes, storage_context=storage_context)
index = VectorStoreIndex(nodes, storage_context=storage_context)
定义 VectorIndexAutoRetriever
¶
我们定义了核心的 VectorIndexAutoRetriever
模块。该模块接收 VectorStoreInfo
,其中包含向量存储集合的结构化描述以及其支持的元数据过滤器。然后这些信息将被用于自动检索提示,LLM 将推断元数据过滤器。
In [ ]:
Copied!
from llama_index.core.retrievers import VectorIndexAutoRetriever
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo
vector_store_info = VectorStoreInfo(
content_info="brief biography of celebrities",
metadata_info=[
MetadataInfo(
name="category",
type="str",
description=(
"Category of the celebrity, one of [Sports, Entertainment,"
" Business, Music]"
),
),
MetadataInfo(
name="country",
type="str",
description=(
"Country of the celebrity, one of [United States, Barbados,"
" Portugal]"
),
),
],
)
retriever = VectorIndexAutoRetriever(
index, vector_store_info=vector_store_info
)
from llama_index.core.retrievers import VectorIndexAutoRetriever
from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo
vector_store_info = VectorStoreInfo(
content_info="brief biography of celebrities",
metadata_info=[
MetadataInfo(
name="category",
type="str",
description=(
"Category of the celebrity, one of [Sports, Entertainment,"
" Business, Music]"
),
),
MetadataInfo(
name="country",
type="str",
description=(
"Country of the celebrity, one of [United States, Barbados,"
" Portugal]"
),
),
],
)
retriever = VectorIndexAutoRetriever(
index, vector_store_info=vector_store_info
)
运行一些示例数据¶
我们尝试运行一些示例数据。请注意元数据过滤器是如何被推断出来的 - 这有助于更精确地检索!
In [ ]:
Copied!
retriever.retrieve("Tell me about two celebrities from United States")
retriever.retrieve("Tell me about two celebrities from United States")