txtai 向量存储¶
如果您在colab上打开这个笔记本,您可能需要安装LlamaIndex 🦙。
In [ ]:
Copied!
%pip install llama-index-vector-stores-txtai
%pip install llama-index-vector-stores-txtai
In [ ]:
Copied!
!pip install llama-index
!pip install llama-index
创建一个Faiss索引¶
In [ ]:
Copied!
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
In [ ]:
Copied!
import txtai# 创建txtai ann索引txtai_index = txtai.ann.ANNFactory.create({"backend": "numpy"})
import txtai# 创建txtai ann索引txtai_index = txtai.ann.ANNFactory.create({"backend": "numpy"})
加载文档,构建VectorStoreIndex¶
In [ ]:
Copied!
from llama_index.core import (
SimpleDirectoryReader,
load_index_from_storage,
VectorStoreIndex,
StorageContext,
)
from llama_index.vector_stores.txtai import TxtaiVectorStore
from IPython.display import Markdown, display
from llama_index.core import (
SimpleDirectoryReader,
load_index_from_storage,
VectorStoreIndex,
StorageContext,
)
from llama_index.vector_stores.txtai import TxtaiVectorStore
from IPython.display import Markdown, display
下载数据
In [ ]:
Copied!
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
In [ ]:
Copied!
# 加载文档documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
# 加载文档documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
In [ ]:
Copied!
vector_store = TxtaiVectorStore(txtai_index=txtai_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
vector_store = TxtaiVectorStore(txtai_index=txtai_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
In [ ]:
Copied!
# 将索引保存到磁盘index.storage_context.persist()
# 将索引保存到磁盘index.storage_context.persist()
In [ ]:
Copied!
# 从磁盘加载索引vector_store = TxtaiVectorStore.from_persist_dir("./storage")storage_context = StorageContext.from_defaults( vector_store=vector_store, persist_dir="./storage")index = load_index_from_storage(storage_context=storage_context)
# 从磁盘加载索引vector_store = TxtaiVectorStore.from_persist_dir("./storage")storage_context = StorageContext.from_defaults( vector_store=vector_store, persist_dir="./storage")index = load_index_from_storage(storage_context=storage_context)
# 查询索引
这个代码段演示了如何查询列表中特定元素的索引。
In [ ]:
Copied!
# 将日志级别设置为DEBUG,以获得更详细的输出query_engine = index.as_query_engine()response = query_engine.query("作者在成长过程中做了什么?")
# 将日志级别设置为DEBUG,以获得更详细的输出query_engine = index.as_query_engine()response = query_engine.query("作者在成长过程中做了什么?")
In [ ]:
Copied!
display(Markdown(f"<b>{response}</b>"))
display(Markdown(f"{response}"))
In [ ]:
Copied!
# 将日志级别设置为DEBUG,以获得更详细的输出query_engine = index.as_query_engine()response = query_engine.query( "作者在Y Combinator结束后做了什么?")
# 将日志级别设置为DEBUG,以获得更详细的输出query_engine = index.as_query_engine()response = query_engine.query( "作者在Y Combinator结束后做了什么?")
In [ ]:
Copied!
display(Markdown(f"<b>{response}</b>"))
display(Markdown(f"{response}"))