mlflow.shap
- mlflow.shap.get_default_conda_env()[源代码]
- 返回:
通过调用
save_explainer()
和log_explainer()
生成的 MLflow 模型的默认 Conda 环境。
- mlflow.shap.get_default_pip_requirements()[源代码]
此flavor生成的MLflow Models的默认pip需求列表。调用
save_explainer()
和log_explainer()
会生成一个pip环境,该环境至少包含这些需求。
- mlflow.shap.get_underlying_model_flavor(model)[源代码]
查找底层模型的风格。
- 参数:
model – 解释器的底层模型。
- mlflow.shap.load_explainer(model_uri)[源代码]
从本地文件或运行中加载一个 SHAP 解释器。
- 参数:
model_uri – MLflow 模型的位置,采用 URI 格式。例如: -
/Users/me/path/to/local/model
-relative/path/to/local/model
-s3://my_bucket/path/to/model
-runs:/<mlflow_run_id>/run-relative/path/to/model
-models:/<model_name>/<model_version>
-models:/<model_name>/<stage>
有关支持的 URI 方案的更多信息,请参阅 引用工件。- 返回:
一个 SHAP 解释器。
- mlflow.shap.log_explainer(explainer, artifact_path, serialize_model_using_mlflow=True, conda_env=None, code_paths=None, registered_model_name=None, signature: ModelSignature = None, input_example: DataFrame | ndarray | dict | list | csr_matrix | csc_matrix | str | bytes | tuple = None, await_registration_for=300, pip_requirements=None, extra_pip_requirements=None, metadata=None)[源代码]
将 SHAP 解释器记录为当前运行的 MLflow 工件。
- 参数:
explainer – 要保存的 SHAP 解释器。
artifact_path – 运行相对的工件路径。
serialize_model_using_mlflow – 当设置为 True 时,MLflow 将提取底层模型并将其序列化为 MLmodel,否则使用 SHAP 的内部序列化。默认为 True。目前 MLflow 序列化仅支持 ‘sklearn’ 或 ‘pytorch’ 风味的模型。
conda_env –
一个Conda环境的字典表示形式,或Conda环境yaml文件的路径。如果提供,这将描述模型应运行的环境。至少,它应指定包含在
get_default_conda_env()
中的依赖项。如果为None
,则通过mlflow.models.infer_pip_requirements()
推断的pip要求添加一个conda环境到模型中。如果要求推断失败,则回退到使用get_default_pip_requirements()
。来自conda_env
的pip要求被写入一个piprequirements.txt
文件,完整的conda环境被写入conda.yaml
。以下是一个conda环境的字典表示形式的*示例*:{ "name": "mlflow-env", "channels": ["conda-forge"], "dependencies": [ "python=3.8.15", { "pip": [ "shap==x.y.z" ], }, ], }
code_paths – 本地文件系统路径列表,指向Python文件依赖项(或包含文件依赖项的目录)。这些文件在加载模型时会被*前置*到系统路径中。如果为给定模型声明了依赖关系,则应从公共根路径声明相对导入,以避免在加载模型时出现导入错误。有关``code_paths``功能的详细解释、推荐的使用模式和限制,请参阅`code_paths使用指南 <https://mlflow.org/docs/latest/model/dependencies.html?highlight=code_paths#saving-extra-code-with-an-mlflow-model>`_。
registered_model_name – 如果指定,在
registered_model_name
下创建一个模型版本,如果给定名称的注册模型不存在,则同时创建一个注册模型。signature –
ModelSignature
描述了模型的输入和输出Schema
。模型签名可以从具有有效模型输入(例如,省略目标列的训练数据集)和有效模型输出(例如,在训练数据集上生成的模型预测)的数据集中推断
,例如: .. code-block:: pythoninput_example – 一个或多个有效的模型输入实例。输入示例用作提示,指示应向模型提供哪些数据。它将被转换为Pandas DataFrame,然后使用Pandas的面向分割的格式序列化为json,或者是一个numpy数组,其中示例将通过将其转换为列表来序列化为json。字节被base64编码。当``signature``参数为``None``时,输入示例用于推断模型签名。
await_registration_for – 等待模型版本完成创建并处于
READY
状态的秒数。默认情况下,函数等待五分钟。指定 0 或 None 以跳过等待。pip_requirements – 可以是 pip 需求字符串的可迭代对象(例如
["shap", "-r requirements.txt", "-c constraints.txt"]
),或者是本地文件系统上 pip 需求文件的字符串路径(例如"requirements.txt"
)。如果提供,这将描述该模型应运行的环境。如果为None
,则通过mlflow.models.infer_pip_requirements()
从当前软件环境中推断出默认的需求列表。如果需求推断失败,则回退到使用get_default_pip_requirements()
。需求和约束都会自动解析并分别写入requirements.txt
和constraints.txt
文件,并作为模型的一部分存储。需求也会写入模型 conda 环境(conda.yaml
)文件的pip
部分。extra_pip_requirements – 可以是 pip 需求字符串的可迭代对象(例如
["pandas", "-r requirements.txt", "-c constraints.txt"]
),或者是本地文件系统上的 pip 需求文件的字符串路径(例如"requirements.txt"
)。如果提供,这将描述附加的 pip 需求,这些需求会被追加到根据用户当前软件环境自动生成的一组默认 pip 需求中。需求和约束会分别自动解析并写入requirements.txt
和constraints.txt
文件,并作为模型的一部分存储。需求也会被写入模型的 conda 环境(conda.yaml
)文件的pip
部分。 .. 警告:: 以下参数不能同时指定: -conda_env
-pip_requirements
-extra_pip_requirements
这个示例 展示了如何使用pip_requirements
和extra_pip_requirements
指定 pip 需求。metadata – 传递给模型并在 MLmodel 文件中存储的自定义元数据字典。
- mlflow.shap.log_explanation(predict_function, features, artifact_path=None)[源代码]
给定一个能够计算提供的
features
上的 ML 模型输出的predict_function
,计算并记录 ML 模型输出的解释。解释以包含以下由 `SHAP`_(SHapley Additive exPlanations)生成的项目的工件目录的形式记录。基本值
SHAP 值(使用 shap.KernelExplainer 计算)
摘要条形图(显示每个特征对模型输出的平均影响)
- 参数:
predict_function – 一个用于计算模型输出的函数(例如 scikit-learn 分类器的
predict_proba
方法)。必须具有以下签名: .. code-block:: python def predict_function(X) -> pred: … -X
:一个类似数组的对象,其形状应为(# 样本数,# 特征数)。 -pred
:一个类似数组的对象,其形状应为(# 样本数)用于回归器,或(# 类别数,# 样本数)用于分类器。对于分类器,pred
中的值应对应于每个类别的预测概率。 可接受的类似数组的对象类型: -numpy.array
-pandas.DataFrame
-shap.common.DenseData
-scipy.sparse matrix
features – 用于计算 SHAP 值的特征矩阵。提供的特征应具有形状(# 样本,# 特征),并且可以是上述数组类对象类型之一。 .. note:: shap.KernelExplainer 的背景数据是通过使用 shap.kmeans 对
features
进行子采样生成的。出于性能原因,背景数据的大小限制为 100 行。artifact_path – 解释保存的运行相对工件路径。如果未指定,默认为“model_explanations_shap”。
- 返回:
记录解释的工件URI。
import os import numpy as np import pandas as pd from sklearn.datasets import load_diabetes from sklearn.linear_model import LinearRegression import mlflow from mlflow import MlflowClient # prepare training data X, y = dataset = load_diabetes(return_X_y=True, as_frame=True) X = pd.DataFrame(dataset.data[:50, :8], columns=dataset.feature_names[:8]) y = dataset.target[:50] # train a model model = LinearRegression() model.fit(X, y) # log an explanation with mlflow.start_run() as run: mlflow.shap.log_explanation(model.predict, X) # list artifacts client = MlflowClient() artifact_path = "model_explanations_shap" artifacts = [x.path for x in client.list_artifacts(run.info.run_id, artifact_path)] print("# artifacts:") print(artifacts) # load back the logged explanation dst_path = client.download_artifacts(run.info.run_id, artifact_path) base_values = np.load(os.path.join(dst_path, "base_values.npy")) shap_values = np.load(os.path.join(dst_path, "shap_values.npy")) print("\n# base_values:") print(base_values) print("\n# shap_values:") print(shap_values[:3])
# artifacts: ['model_explanations_shap/base_values.npy', 'model_explanations_shap/shap_values.npy', 'model_explanations_shap/summary_bar_plot.png'] # base_values: 20.502000000000002 # shap_values: [[ 2.09975523 0.4746513 7.63759026 0. ] [ 2.00883109 -0.18816665 -0.14419184 0. ] [ 2.00891772 -0.18816665 -0.14419184 0. ]]
- mlflow.shap.save_explainer(explainer, path, serialize_model_using_mlflow=True, conda_env=None, code_paths=None, mlflow_model=None, signature: ModelSignature = None, input_example: DataFrame | ndarray | dict | list | csr_matrix | csc_matrix | str | bytes | tuple = None, pip_requirements=None, extra_pip_requirements=None, metadata=None)[源代码]
将 SHAP 解释器保存到本地文件系统中的路径。生成包含以下风格的 MLflow 模型:
- 参数:
explainer – 要保存的 SHAP 解释器。
path – 解释器要保存的本地路径。
serialize_model_using_mlflow – 当设置为 True 时,MLflow 将提取底层模型并将其序列化为 MLmodel,否则使用 SHAP 的内部序列化。默认为 True。目前 MLflow 序列化仅支持 ‘sklearn’ 或 ‘pytorch’ 风味的模型。
conda_env –
一个Conda环境的字典表示形式,或Conda环境yaml文件的路径。如果提供,这将描述模型应运行的环境。至少,它应指定包含在
get_default_conda_env()
中的依赖项。如果为None
,则通过mlflow.models.infer_pip_requirements()
推断的pip要求添加一个conda环境到模型中。如果要求推断失败,则回退到使用get_default_pip_requirements()
。来自conda_env
的pip要求被写入一个piprequirements.txt
文件,完整的conda环境被写入conda.yaml
。以下是一个conda环境的字典表示形式的*示例*:{ "name": "mlflow-env", "channels": ["conda-forge"], "dependencies": [ "python=3.8.15", { "pip": [ "shap==x.y.z" ], }, ], }
code_paths – 本地文件系统路径列表,指向Python文件依赖项(或包含文件依赖项的目录)。这些文件在加载模型时会被*前置*到系统路径中。如果为给定模型声明了依赖关系,则应从公共根路径声明相对导入,以避免在加载模型时出现导入错误。有关``code_paths``功能的详细解释、推荐的使用模式和限制,请参阅`code_paths使用指南 <https://mlflow.org/docs/latest/model/dependencies.html?highlight=code_paths#saving-extra-code-with-an-mlflow-model>`_。
mlflow_model –
mlflow.models.Model
正在添加此风格。signature –
ModelSignature
描述了模型的输入和输出Schema
。模型签名可以从具有有效模型输入(例如,省略目标列的训练数据集)和有效模型输出(例如,在训练数据集上生成的模型预测)的数据集中推断
,例如: .. code-block:: pythoninput_example – 一个或多个有效的模型输入实例。输入示例用作提示,指示应向模型提供哪些数据。它将被转换为Pandas DataFrame,然后使用Pandas的面向分割的格式序列化为json,或者是一个numpy数组,其中示例将通过将其转换为列表来序列化为json。字节被base64编码。当``signature``参数为``None``时,输入示例用于推断模型签名。
pip_requirements – 可以是 pip 需求字符串的可迭代对象(例如
["shap", "-r requirements.txt", "-c constraints.txt"]
),或者是本地文件系统上 pip 需求文件的字符串路径(例如"requirements.txt"
)。如果提供,这将描述该模型应运行的环境。如果为None
,则通过mlflow.models.infer_pip_requirements()
从当前软件环境中推断出默认的需求列表。如果需求推断失败,则回退到使用get_default_pip_requirements()
。需求和约束都会自动解析并分别写入requirements.txt
和constraints.txt
文件,并作为模型的一部分存储。需求也会写入模型 conda 环境(conda.yaml
)文件的pip
部分。extra_pip_requirements – 可以是 pip 需求字符串的可迭代对象(例如
["pandas", "-r requirements.txt", "-c constraints.txt"]
),或者是本地文件系统上的 pip 需求文件的字符串路径(例如"requirements.txt"
)。如果提供,这将描述附加的 pip 需求,这些需求会被追加到根据用户当前软件环境自动生成的一组默认 pip 需求中。需求和约束会分别自动解析并写入requirements.txt
和constraints.txt
文件,并作为模型的一部分存储。需求也会被写入模型的 conda 环境(conda.yaml
)文件的pip
部分。 .. 警告:: 以下参数不能同时指定: -conda_env
-pip_requirements
-extra_pip_requirements
这个示例 展示了如何使用pip_requirements
和extra_pip_requirements
指定 pip 需求。metadata – 传递给模型并在 MLmodel 文件中存储的自定义元数据字典。