ecdf: 创建经验累积分布函数图表

一个方便绘制经验累积分布函数的函数。

> from mlxtend.ecdf import ecdf

概述

一个方便绘制经验累积分布函数(ECDF)并为探索性数据分析添加百分位数阈值的函数。

参考文献

示例 1 - ECDF

from mlxtend.data import iris_data
from mlxtend.plotting import ecdf
import matplotlib.pyplot as plt

X, y = iris_data()

ax, _, _ = ecdf(x=X[:, 0], x_label='sepal length (cm)')
plt.show()

png

示例 2 - 多个经验累积分布函数(ECDFs)

from mlxtend.data import iris_data
from mlxtend.plotting import ecdf
import matplotlib.pyplot as plt

X, y = iris_data()

# 首次经验累积分布函数
x1 = X[:, 0]
ax, _, _ = ecdf(x1, x_label='cm')

# 第二经验累积分布函数
x2 = X[:, 1]
ax, _, _ = ecdf(x2, ax=ax)

plt.legend(['sepal length', 'sepal width'])
plt.show()

png

示例 3 - 带百分位数阈值的经验累积分布函数 (ECDF)

from mlxtend.data import iris_data
from mlxtend.plotting import ecdf
import matplotlib.pyplot as plt

X, y = iris_data()

ax, threshold, count = ecdf(x=X[:, 0], 
                            x_label='sepal length (cm)',
                            percentile=0.8)

plt.show()

print('Feature threshold at the 80th percentile:', threshold)
print('Number of samples below the threshold:', count)

png

Feature threshold at the 80th percentile: 6.5
Number of samples below the threshold: 120

API

ecdf(x, y_label='ECDF', x_label=None, ax=None, percentile=None, ecdf_color=None, ecdf_marker='o', percentile_color='black', percentile_linestyle='--')

Plots an Empirical Cumulative Distribution Function

Parameters

Returns

Examples

For usage examples, please see https://rasbt.github.io/mlxtend/user_guide/plotting/ecdf/