API CheatSheet ============== The full API Reference is available at `PyOD Documentation `_. Below is a quick cheatsheet for all detectors: * :func:`pyod.models.base.BaseDetector.fit`: The parameter y is ignored in unsupervised methods. * :func:`pyod.models.base.BaseDetector.decision_function`: Predict raw anomaly scores for X using the fitted detector. * :func:`pyod.models.base.BaseDetector.predict`: Determine whether a sample is an outlier or not as binary labels using the fitted detector. * :func:`pyod.models.base.BaseDetector.predict_proba`: Estimate the probability of a sample being an outlier using the fitted detector. * :func:`pyod.models.base.BaseDetector.predict_confidence`: Assess the model's confidence on a per-sample basis (applicable in predict and predict_proba) :cite:`a-perini2020quantifying`. **Key Attributes of a fitted model**: * :attr:`pyod.models.base.BaseDetector.decision_scores_`: Outlier scores of the training data. Higher scores typically indicate more abnormal behavior. Outliers usually have higher scores. Outliers tend to have higher scores. * :attr:`pyod.models.base.BaseDetector.labels_`: Binary labels of the training data, where 0 indicates inliers and 1 indicates outliers/anomalies. See base class definition below: pyod.models.base module ----------------------- .. automodule:: pyod.models.base :members: :undoc-members: :show-inheritance: :inherited-members: