import numpy as np
from .._shared._geometry import polygon_clip
from .._shared.version_requirements import require
from .._shared.compat import NP_COPY_IF_NEEDED
from ._draw import (
_coords_inside_image,
_line,
_line_aa,
_polygon,
_ellipse_perimeter,
_circle_perimeter,
_circle_perimeter_aa,
_bezier_curve,
)
def _ellipse_in_shape(shape, center, radii, rotation=0.0):
"""Generate coordinates of points within ellipse bounded by shape.
Parameters
----------
shape : iterable of ints
Shape of the input image. Must be at least length 2. Only the first
two values are used to determine the extent of the input image.
center : iterable of floats
(row, column) position of center inside the given shape.
radii : iterable of floats
Size of two half axes (for row and column)
rotation : float, optional
Rotation of the ellipse defined by the above, in radians
in range (-PI, PI), in contra clockwise direction,
with respect to the column-axis.
Returns
-------
rows : iterable of ints
Row coordinates representing values within the ellipse.
cols : iterable of ints
Corresponding column coordinates representing values within the ellipse.
"""
r_lim, c_lim = np.ogrid[0 : float(shape[0]), 0 : float(shape[1])]
r_org, c_org = center
r_rad, c_rad = radii
rotation %= np.pi
sin_alpha, cos_alpha = np.sin(rotation), np.cos(rotation)
r, c = (r_lim - r_org), (c_lim - c_org)
distances = ((r * cos_alpha + c * sin_alpha) / r_rad) ** 2 + (
(r * sin_alpha - c * cos_alpha) / c_rad
) ** 2
return np.nonzero(distances < 1)
[文档]
def ellipse(r, c, r_radius, c_radius, shape=None, rotation=0.0):
"""Generate coordinates of pixels within ellipse.
Parameters
----------
r, c : double
Centre coordinate of ellipse.
r_radius, c_radius : double
Minor and major semi-axes. ``(r/r_radius)**2 + (c/c_radius)**2 = 1``.
shape : tuple, optional
Image shape which is used to determine the maximum extent of output pixel
coordinates. This is useful for ellipses which exceed the image size.
By default the full extent of the ellipse are used. Must be at least
length 2. Only the first two values are used to determine the extent.
rotation : float, optional (default 0.)
Set the ellipse rotation (rotation) in range (-PI, PI)
in contra clock wise direction, so PI/2 degree means swap ellipse axis
Returns
-------
rr, cc : ndarray of int
Pixel coordinates of ellipse.
May be used to directly index into an array, e.g.
``img[rr, cc] = 1``.
Examples
--------
>>> from skimage.draw import ellipse
>>> img = np.zeros((10, 12), dtype=np.uint8)
>>> rr, cc = ellipse(5, 6, 3, 5, rotation=np.deg2rad(30))
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
Notes
-----
The ellipse equation::
((x * cos(alpha) + y * sin(alpha)) / x_radius) ** 2 +
((x * sin(alpha) - y * cos(alpha)) / y_radius) ** 2 = 1
Note that the positions of `ellipse` without specified `shape` can have
also, negative values, as this is correct on the plane. On the other hand
using these ellipse positions for an image afterwards may lead to appearing
on the other side of image, because ``image[-1, -1] = image[end-1, end-1]``
>>> rr, cc = ellipse(1, 2, 3, 6)
>>> img = np.zeros((6, 12), dtype=np.uint8)
>>> img[rr, cc] = 1
>>> img
array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1]], dtype=uint8)
"""
center = np.array([r, c])
radii = np.array([r_radius, c_radius])
# allow just rotation with in range +/- 180 degree
rotation %= np.pi
# compute rotated radii by given rotation
r_radius_rot = abs(r_radius * np.cos(rotation)) + c_radius * np.sin(rotation)
c_radius_rot = r_radius * np.sin(rotation) + abs(c_radius * np.cos(rotation))
# The upper_left and lower_right corners of the smallest rectangle
# containing the ellipse.
radii_rot = np.array([r_radius_rot, c_radius_rot])
upper_left = np.ceil(center - radii_rot).astype(int)
lower_right = np.floor(center + radii_rot).astype(int)
if shape is not None:
# Constrain upper_left and lower_right by shape boundary.
upper_left = np.maximum(upper_left, np.array([0, 0]))
lower_right = np.minimum(lower_right, np.array(shape[:2]) - 1)
shifted_center = center - upper_left
bounding_shape = lower_right - upper_left + 1
rr, cc = _ellipse_in_shape(bounding_shape, shifted_center, radii, rotation)
rr.flags.writeable = True
cc.flags.writeable = True
rr += upper_left[0]
cc += upper_left[1]
return rr, cc
[文档]
def disk(center, radius, *, shape=None):
"""Generate coordinates of pixels within circle.
Parameters
----------
center : tuple
Center coordinate of disk.
radius : double
Radius of disk.
shape : tuple, optional
Image shape as a tuple of size 2. Determines the maximum
extent of output pixel coordinates. This is useful for disks that
exceed the image size. If None, the full extent of the disk is used.
The shape might result in negative coordinates and wraparound
behaviour.
Returns
-------
rr, cc : ndarray of int
Pixel coordinates of disk.
May be used to directly index into an array, e.g.
``img[rr, cc] = 1``.
Examples
--------
>>> import numpy as np
>>> from skimage.draw import disk
>>> shape = (4, 4)
>>> img = np.zeros(shape, dtype=np.uint8)
>>> rr, cc = disk((0, 0), 2, shape=shape)
>>> img[rr, cc] = 1
>>> img
array([[1, 1, 0, 0],
[1, 1, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=uint8)
>>> img = np.zeros(shape, dtype=np.uint8)
>>> # Negative coordinates in rr and cc perform a wraparound
>>> rr, cc = disk((0, 0), 2, shape=None)
>>> img[rr, cc] = 1
>>> img
array([[1, 1, 0, 1],
[1, 1, 0, 1],
[0, 0, 0, 0],
[1, 1, 0, 1]], dtype=uint8)
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc = disk((4, 4), 5)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
"""
r, c = center
return ellipse(r, c, radius, radius, shape)
[文档]
@require("matplotlib", ">=3.3")
def polygon_perimeter(r, c, shape=None, clip=False):
"""Generate polygon perimeter coordinates.
Parameters
----------
r : (N,) ndarray
Row coordinates of vertices of polygon.
c : (N,) ndarray
Column coordinates of vertices of polygon.
shape : tuple, optional
Image shape which is used to determine maximum extents of output pixel
coordinates. This is useful for polygons that exceed the image size.
If None, the full extents of the polygon is used. Must be at least
length 2. Only the first two values are used to determine the extent of
the input image.
clip : bool, optional
Whether to clip the polygon to the provided shape. If this is set
to True, the drawn figure will always be a closed polygon with all
edges visible.
Returns
-------
rr, cc : ndarray of int
Pixel coordinates of polygon.
May be used to directly index into an array, e.g.
``img[rr, cc] = 1``.
Examples
--------
.. testsetup::
>>> import pytest; _ = pytest.importorskip('matplotlib')
>>> from skimage.draw import polygon_perimeter
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc = polygon_perimeter([5, -1, 5, 10],
... [-1, 5, 11, 5],
... shape=img.shape, clip=True)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 1, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 1, 1, 1, 0, 0, 0]], dtype=uint8)
"""
if clip:
if shape is None:
raise ValueError("Must specify clipping shape")
clip_box = np.array([0, 0, shape[0] - 1, shape[1] - 1])
else:
clip_box = np.array([np.min(r), np.min(c), np.max(r), np.max(c)])
# Do the clipping irrespective of whether clip is set. This
# ensures that the returned polygon is closed and is an array.
r, c = polygon_clip(r, c, *clip_box)
r = np.round(r).astype(int)
c = np.round(c).astype(int)
# Construct line segments
rr, cc = [], []
for i in range(len(r) - 1):
line_r, line_c = line(r[i], c[i], r[i + 1], c[i + 1])
rr.extend(line_r)
cc.extend(line_c)
rr = np.asarray(rr)
cc = np.asarray(cc)
if shape is None:
return rr, cc
else:
return _coords_inside_image(rr, cc, shape)
[文档]
def set_color(image, coords, color, alpha=1):
"""Set pixel color in the image at the given coordinates.
Note that this function modifies the color of the image in-place.
Coordinates that exceed the shape of the image will be ignored.
Parameters
----------
image : (M, N, C) ndarray
Image
coords : tuple of ((K,) ndarray, (K,) ndarray)
Row and column coordinates of pixels to be colored.
color : (C,) ndarray
Color to be assigned to coordinates in the image.
alpha : scalar or (K,) ndarray
Alpha values used to blend color with image. 0 is transparent,
1 is opaque.
Examples
--------
>>> from skimage.draw import line, set_color
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc = line(1, 1, 20, 20)
>>> set_color(img, (rr, cc), 1)
>>> img
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]], dtype=uint8)
"""
rr, cc = coords
if image.ndim == 2:
image = image[..., np.newaxis]
color = np.array(color, ndmin=1, copy=NP_COPY_IF_NEEDED)
if image.shape[-1] != color.shape[-1]:
raise ValueError(
f'Color shape ({color.shape[0]}) must match last '
'image dimension ({image.shape[-1]}).'
)
if np.isscalar(alpha):
# Can be replaced by ``full_like`` when numpy 1.8 becomes
# minimum dependency
alpha = np.ones_like(rr) * alpha
rr, cc, alpha = _coords_inside_image(rr, cc, image.shape, val=alpha)
alpha = alpha[..., np.newaxis]
color = color * alpha
vals = image[rr, cc] * (1 - alpha)
image[rr, cc] = vals + color
[文档]
def line(r0, c0, r1, c1):
"""Generate line pixel coordinates.
Parameters
----------
r0, c0 : int
Starting position (row, column).
r1, c1 : int
End position (row, column).
Returns
-------
rr, cc : (N,) ndarray of int
Indices of pixels that belong to the line.
May be used to directly index into an array, e.g.
``img[rr, cc] = 1``.
Notes
-----
Anti-aliased line generator is available with `line_aa`.
Examples
--------
>>> from skimage.draw import line
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc = line(1, 1, 8, 8)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
"""
return _line(r0, c0, r1, c1)
[文档]
def line_aa(r0, c0, r1, c1):
"""Generate anti-aliased line pixel coordinates.
Parameters
----------
r0, c0 : int
Starting position (row, column).
r1, c1 : int
End position (row, column).
Returns
-------
rr, cc, val : (N,) ndarray (int, int, float)
Indices of pixels (`rr`, `cc`) and intensity values (`val`).
``img[rr, cc] = val``.
References
----------
.. [1] A Rasterizing Algorithm for Drawing Curves, A. Zingl, 2012
http://members.chello.at/easyfilter/Bresenham.pdf
Examples
--------
>>> from skimage.draw import line_aa
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc, val = line_aa(1, 1, 8, 8)
>>> img[rr, cc] = val * 255
>>> img
array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 255, 74, 0, 0, 0, 0, 0, 0, 0],
[ 0, 74, 255, 74, 0, 0, 0, 0, 0, 0],
[ 0, 0, 74, 255, 74, 0, 0, 0, 0, 0],
[ 0, 0, 0, 74, 255, 74, 0, 0, 0, 0],
[ 0, 0, 0, 0, 74, 255, 74, 0, 0, 0],
[ 0, 0, 0, 0, 0, 74, 255, 74, 0, 0],
[ 0, 0, 0, 0, 0, 0, 74, 255, 74, 0],
[ 0, 0, 0, 0, 0, 0, 0, 74, 255, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
"""
return _line_aa(r0, c0, r1, c1)
[文档]
def polygon(r, c, shape=None):
"""Generate coordinates of pixels inside a polygon.
Parameters
----------
r : (N,) array_like
Row coordinates of the polygon's vertices.
c : (N,) array_like
Column coordinates of the polygon's vertices.
shape : tuple, optional
Image shape which is used to determine the maximum extent of output
pixel coordinates. This is useful for polygons that exceed the image
size. If None, the full extent of the polygon is used. Must be at
least length 2. Only the first two values are used to determine the
extent of the input image.
Returns
-------
rr, cc : ndarray of int
Pixel coordinates of polygon.
May be used to directly index into an array, e.g.
``img[rr, cc] = 1``.
See Also
--------
polygon2mask:
Create a binary mask from a polygon.
Notes
-----
This function ensures that `rr` and `cc` don't contain negative values.
Pixels of the polygon that whose coordinates are smaller 0, are not drawn.
Examples
--------
>>> import skimage as ski
>>> r = np.array([1, 2, 8])
>>> c = np.array([1, 7, 4])
>>> rr, cc = ski.draw.polygon(r, c)
>>> img = np.zeros((10, 10), dtype=int)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
If the image `shape` is defined and vertices / points of the `polygon` are
outside this coordinate space, only a part (or none at all) of the polygon's
pixels is returned. Shifting the polygon's vertices by an offset can be used
to move the polygon around and potentially draw an arbitrary sub-region of
the polygon.
>>> offset = (2, -4)
>>> rr, cc = ski.draw.polygon(r - offset[0], c - offset[1], shape=img.shape)
>>> img = np.zeros((10, 10), dtype=int)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
"""
return _polygon(r, c, shape)
[文档]
def circle_perimeter(r, c, radius, method='bresenham', shape=None):
"""Generate circle perimeter coordinates.
Parameters
----------
r, c : int
Centre coordinate of circle.
radius : int
Radius of circle.
method : {'bresenham', 'andres'}, optional
bresenham : Bresenham method (default)
andres : Andres method
shape : tuple, optional
Image shape which is used to determine the maximum extent of output
pixel coordinates. This is useful for circles that exceed the image
size. If None, the full extent of the circle is used. Must be at least
length 2. Only the first two values are used to determine the extent of
the input image.
Returns
-------
rr, cc : (N,) ndarray of int
Bresenham and Andres' method:
Indices of pixels that belong to the circle perimeter.
May be used to directly index into an array, e.g.
``img[rr, cc] = 1``.
Notes
-----
Andres method presents the advantage that concentric
circles create a disc whereas Bresenham can make holes. There
is also less distortions when Andres circles are rotated.
Bresenham method is also known as midpoint circle algorithm.
Anti-aliased circle generator is available with `circle_perimeter_aa`.
References
----------
.. [1] J.E. Bresenham, "Algorithm for computer control of a digital
plotter", IBM Systems journal, 4 (1965) 25-30.
.. [2] E. Andres, "Discrete circles, rings and spheres", Computers &
Graphics, 18 (1994) 695-706.
Examples
--------
>>> from skimage.draw import circle_perimeter
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc = circle_perimeter(4, 4, 3)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
"""
return _circle_perimeter(r, c, radius, method, shape)
[文档]
def circle_perimeter_aa(r, c, radius, shape=None):
"""Generate anti-aliased circle perimeter coordinates.
Parameters
----------
r, c : int
Centre coordinate of circle.
radius : int
Radius of circle.
shape : tuple, optional
Image shape which is used to determine the maximum extent of output
pixel coordinates. This is useful for circles that exceed the image
size. If None, the full extent of the circle is used. Must be at least
length 2. Only the first two values are used to determine the extent of
the input image.
Returns
-------
rr, cc, val : (N,) ndarray (int, int, float)
Indices of pixels (`rr`, `cc`) and intensity values (`val`).
``img[rr, cc] = val``.
Notes
-----
Wu's method draws anti-aliased circle. This implementation doesn't use
lookup table optimization.
Use the function ``draw.set_color`` to apply ``circle_perimeter_aa``
results to color images.
References
----------
.. [1] X. Wu, "An efficient antialiasing technique", In ACM SIGGRAPH
Computer Graphics, 25 (1991) 143-152.
Examples
--------
>>> from skimage.draw import circle_perimeter_aa
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc, val = circle_perimeter_aa(4, 4, 3)
>>> img[rr, cc] = val * 255
>>> img
array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 60, 211, 255, 211, 60, 0, 0, 0],
[ 0, 60, 194, 43, 0, 43, 194, 60, 0, 0],
[ 0, 211, 43, 0, 0, 0, 43, 211, 0, 0],
[ 0, 255, 0, 0, 0, 0, 0, 255, 0, 0],
[ 0, 211, 43, 0, 0, 0, 43, 211, 0, 0],
[ 0, 60, 194, 43, 0, 43, 194, 60, 0, 0],
[ 0, 0, 60, 211, 255, 211, 60, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
>>> from skimage import data, draw
>>> image = data.chelsea()
>>> rr, cc, val = draw.circle_perimeter_aa(r=100, c=100, radius=75)
>>> draw.set_color(image, (rr, cc), [1, 0, 0], alpha=val)
"""
return _circle_perimeter_aa(r, c, radius, shape)
[文档]
def ellipse_perimeter(r, c, r_radius, c_radius, orientation=0, shape=None):
"""Generate ellipse perimeter coordinates.
Parameters
----------
r, c : int
Centre coordinate of ellipse.
r_radius, c_radius : int
Minor and major semi-axes. ``(r/r_radius)**2 + (c/c_radius)**2 = 1``.
orientation : double, optional
Major axis orientation in clockwise direction as radians.
shape : tuple, optional
Image shape which is used to determine the maximum extent of output
pixel coordinates. This is useful for ellipses that exceed the image
size. If None, the full extent of the ellipse is used. Must be at
least length 2. Only the first two values are used to determine the
extent of the input image.
Returns
-------
rr, cc : (N,) ndarray of int
Indices of pixels that belong to the ellipse perimeter.
May be used to directly index into an array, e.g.
``img[rr, cc] = 1``.
References
----------
.. [1] A Rasterizing Algorithm for Drawing Curves, A. Zingl, 2012
http://members.chello.at/easyfilter/Bresenham.pdf
Examples
--------
>>> from skimage.draw import ellipse_perimeter
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc = ellipse_perimeter(5, 5, 3, 4)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 1, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
Note that the positions of `ellipse` without specified `shape` can have
also, negative values, as this is correct on the plane. On the other hand
using these ellipse positions for an image afterwards may lead to appearing
on the other side of image, because ``image[-1, -1] = image[end-1, end-1]``
>>> rr, cc = ellipse_perimeter(2, 3, 4, 5)
>>> img = np.zeros((9, 12), dtype=np.uint8)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]], dtype=uint8)
"""
return _ellipse_perimeter(r, c, r_radius, c_radius, orientation, shape)
[文档]
def bezier_curve(r0, c0, r1, c1, r2, c2, weight, shape=None):
"""Generate Bezier curve coordinates.
Parameters
----------
r0, c0 : int
Coordinates of the first control point.
r1, c1 : int
Coordinates of the middle control point.
r2, c2 : int
Coordinates of the last control point.
weight : double
Middle control point weight, it describes the line tension.
shape : tuple, optional
Image shape which is used to determine the maximum extent of output
pixel coordinates. This is useful for curves that exceed the image
size. If None, the full extent of the curve is used.
Returns
-------
rr, cc : (N,) ndarray of int
Indices of pixels that belong to the Bezier curve.
May be used to directly index into an array, e.g.
``img[rr, cc] = 1``.
Notes
-----
The algorithm is the rational quadratic algorithm presented in
reference [1]_.
References
----------
.. [1] A Rasterizing Algorithm for Drawing Curves, A. Zingl, 2012
http://members.chello.at/easyfilter/Bresenham.pdf
Examples
--------
>>> import numpy as np
>>> from skimage.draw import bezier_curve
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc = bezier_curve(1, 5, 5, -2, 8, 8, 2)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
"""
return _bezier_curve(r0, c0, r1, c1, r2, c2, weight, shape)
[文档]
def rectangle(start, end=None, extent=None, shape=None):
"""Generate coordinates of pixels within a rectangle.
Parameters
----------
start : tuple
Origin point of the rectangle, e.g., ``([plane,] row, column)``.
end : tuple
End point of the rectangle ``([plane,] row, column)``.
For a 2D matrix, the slice defined by the rectangle is
``[start:(end+1)]``.
Either `end` or `extent` must be specified.
extent : tuple
The extent (size) of the drawn rectangle. E.g.,
``([num_planes,] num_rows, num_cols)``.
Either `end` or `extent` must be specified.
A negative extent is valid, and will result in a rectangle
going along the opposite direction. If extent is negative, the
`start` point is not included.
shape : tuple, optional
Image shape used to determine the maximum bounds of the output
coordinates. This is useful for clipping rectangles that exceed
the image size. By default, no clipping is done.
Returns
-------
coords : array of int, shape (Ndim, Npoints)
The coordinates of all pixels in the rectangle.
Notes
-----
This function can be applied to N-dimensional images, by passing `start` and
`end` or `extent` as tuples of length N.
Examples
--------
>>> import numpy as np
>>> from skimage.draw import rectangle
>>> img = np.zeros((5, 5), dtype=np.uint8)
>>> start = (1, 1)
>>> extent = (3, 3)
>>> rr, cc = rectangle(start, extent=extent, shape=img.shape)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]], dtype=uint8)
>>> img = np.zeros((5, 5), dtype=np.uint8)
>>> start = (0, 1)
>>> end = (3, 3)
>>> rr, cc = rectangle(start, end=end, shape=img.shape)
>>> img[rr, cc] = 1
>>> img
array([[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]], dtype=uint8)
>>> import numpy as np
>>> from skimage.draw import rectangle
>>> img = np.zeros((6, 6), dtype=np.uint8)
>>> start = (3, 3)
>>>
>>> rr, cc = rectangle(start, extent=(2, 2))
>>> img[rr, cc] = 1
>>> rr, cc = rectangle(start, extent=(-2, 2))
>>> img[rr, cc] = 2
>>> rr, cc = rectangle(start, extent=(-2, -2))
>>> img[rr, cc] = 3
>>> rr, cc = rectangle(start, extent=(2, -2))
>>> img[rr, cc] = 4
>>> print(img)
[[0 0 0 0 0 0]
[0 3 3 2 2 0]
[0 3 3 2 2 0]
[0 4 4 1 1 0]
[0 4 4 1 1 0]
[0 0 0 0 0 0]]
"""
tl, br = _rectangle_slice(start=start, end=end, extent=extent)
if shape is not None:
n_dim = len(start)
br = np.minimum(shape[0:n_dim], br)
tl = np.maximum(np.zeros_like(shape[0:n_dim]), tl)
coords = np.meshgrid(*[np.arange(st, en) for st, en in zip(tuple(tl), tuple(br))])
return coords
[文档]
@require("matplotlib", ">=3.3")
def rectangle_perimeter(start, end=None, extent=None, shape=None, clip=False):
"""Generate coordinates of pixels that are exactly around a rectangle.
Parameters
----------
start : tuple
Origin point of the inner rectangle, e.g., ``(row, column)``.
end : tuple
End point of the inner rectangle ``(row, column)``.
For a 2D matrix, the slice defined by inner the rectangle is
``[start:(end+1)]``.
Either `end` or `extent` must be specified.
extent : tuple
The extent (size) of the inner rectangle. E.g.,
``(num_rows, num_cols)``.
Either `end` or `extent` must be specified.
Negative extents are permitted. See `rectangle` to better
understand how they behave.
shape : tuple, optional
Image shape used to determine the maximum bounds of the output
coordinates. This is useful for clipping perimeters that exceed
the image size. By default, no clipping is done. Must be at least
length 2. Only the first two values are used to determine the extent of
the input image.
clip : bool, optional
Whether to clip the perimeter to the provided shape. If this is set
to True, the drawn figure will always be a closed polygon with all
edges visible.
Returns
-------
coords : array of int, shape (2, Npoints)
The coordinates of all pixels in the rectangle.
Examples
--------
.. testsetup::
>>> import pytest; _ = pytest.importorskip('matplotlib')
>>> import numpy as np
>>> from skimage.draw import rectangle_perimeter
>>> img = np.zeros((5, 6), dtype=np.uint8)
>>> start = (2, 3)
>>> end = (3, 4)
>>> rr, cc = rectangle_perimeter(start, end=end, shape=img.shape)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 1],
[0, 0, 1, 0, 0, 1],
[0, 0, 1, 0, 0, 1],
[0, 0, 1, 1, 1, 1]], dtype=uint8)
>>> img = np.zeros((5, 5), dtype=np.uint8)
>>> r, c = rectangle_perimeter(start, (10, 10), shape=img.shape, clip=True)
>>> img[r, c] = 1
>>> img
array([[0, 0, 0, 0, 0],
[0, 0, 1, 1, 1],
[0, 0, 1, 0, 1],
[0, 0, 1, 0, 1],
[0, 0, 1, 1, 1]], dtype=uint8)
"""
top_left, bottom_right = _rectangle_slice(start=start, end=end, extent=extent)
top_left -= 1
r = [top_left[0], top_left[0], bottom_right[0], bottom_right[0], top_left[0]]
c = [top_left[1], bottom_right[1], bottom_right[1], top_left[1], top_left[1]]
return polygon_perimeter(r, c, shape=shape, clip=clip)
def _rectangle_slice(start, end=None, extent=None):
"""Return the slice ``(top_left, bottom_right)`` of the rectangle.
Returns
-------
(top_left, bottom_right)
The slice you would need to select the region in the rectangle defined
by the parameters.
Select it like:
``rect[top_left[0]:bottom_right[0], top_left[1]:bottom_right[1]]``
"""
if end is None and extent is None:
raise ValueError("Either `end` or `extent` must be given.")
if end is not None and extent is not None:
raise ValueError("Cannot provide both `end` and `extent`.")
if extent is not None:
end = np.asarray(start) + np.asarray(extent)
top_left = np.minimum(start, end)
bottom_right = np.maximum(start, end)
top_left = np.round(top_left).astype(int)
bottom_right = np.round(bottom_right).astype(int)
if extent is None:
bottom_right += 1
return (top_left, bottom_right)