skimage.exposure.histogram_matching 源代码
import numpy as np
from .._shared import utils
def _match_cumulative_cdf(source, template):
"""
Return modified source array so that the cumulative density function of
its values matches the cumulative density function of the template.
"""
if source.dtype.kind == 'u':
src_lookup = source.reshape(-1)
src_counts = np.bincount(src_lookup)
tmpl_counts = np.bincount(template.reshape(-1))
# omit values where the count was 0
tmpl_values = np.nonzero(tmpl_counts)[0]
tmpl_counts = tmpl_counts[tmpl_values]
else:
src_values, src_lookup, src_counts = np.unique(
source.reshape(-1), return_inverse=True, return_counts=True
)
tmpl_values, tmpl_counts = np.unique(template.reshape(-1), return_counts=True)
# calculate normalized quantiles for each array
src_quantiles = np.cumsum(src_counts) / source.size
tmpl_quantiles = np.cumsum(tmpl_counts) / template.size
interp_a_values = np.interp(src_quantiles, tmpl_quantiles, tmpl_values)
return interp_a_values[src_lookup].reshape(source.shape)
[文档]
@utils.channel_as_last_axis(channel_arg_positions=(0, 1))
def match_histograms(image, reference, *, channel_axis=None):
"""Adjust an image so that its cumulative histogram matches that of another.
The adjustment is applied separately for each channel.
Parameters
----------
image : ndarray
Input image. Can be gray-scale or in color.
reference : ndarray
Image to match histogram of. Must have the same number of channels as
image.
channel_axis : int or None, optional
If None, the image is assumed to be a grayscale (single channel) image.
Otherwise, this parameter indicates which axis of the array corresponds
to channels.
Returns
-------
matched : ndarray
Transformed input image.
Raises
------
ValueError
Thrown when the number of channels in the input image and the reference
differ.
References
----------
.. [1] http://paulbourke.net/miscellaneous/equalisation/
"""
if image.ndim != reference.ndim:
raise ValueError(
'Image and reference must have the same number ' 'of channels.'
)
if channel_axis is not None:
if image.shape[-1] != reference.shape[-1]:
raise ValueError(
'Number of channels in the input image and '
'reference image must match!'
)
matched = np.empty(image.shape, dtype=image.dtype)
for channel in range(image.shape[-1]):
matched_channel = _match_cumulative_cdf(
image[..., channel], reference[..., channel]
)
matched[..., channel] = matched_channel
else:
# _match_cumulative_cdf will always return float64 due to np.interp
matched = _match_cumulative_cdf(image, reference)
if matched.dtype.kind == 'f':
# output a float32 result when the input is float16 or float32
out_dtype = utils._supported_float_type(image.dtype)
matched = matched.astype(out_dtype, copy=False)
return matched