skimage.future.trainable_segmentation 源代码

from skimage.feature import multiscale_basic_features

try:
    from sklearn.exceptions import NotFittedError
    from sklearn.ensemble import RandomForestClassifier

    has_sklearn = True
except ImportError:
    has_sklearn = False

    class NotFittedError(Exception):
        pass


[文档] class TrainableSegmenter: """Estimator for classifying pixels. Parameters ---------- clf : classifier object, optional classifier object, exposing a ``fit`` and a ``predict`` method as in scikit-learn's API, for example an instance of ``RandomForestClassifier`` or ``LogisticRegression`` classifier. features_func : function, optional function computing features on all pixels of the image, to be passed to the classifier. The output should be of shape ``(m_features, *labels.shape)``. If None, :func:`skimage.feature.multiscale_basic_features` is used. Methods ------- compute_features fit predict """
[文档] def __init__(self, clf=None, features_func=None): if clf is None: if has_sklearn: self.clf = RandomForestClassifier(n_estimators=100, n_jobs=-1) else: raise ImportError( "Please install scikit-learn or pass a classifier instance" "to TrainableSegmenter." ) else: self.clf = clf self.features_func = features_func
[文档] def compute_features(self, image): if self.features_func is None: self.features_func = multiscale_basic_features self.features = self.features_func(image)
[文档] def fit(self, image, labels): """Train classifier using partially labeled (annotated) image. Parameters ---------- image : ndarray Input image, which can be grayscale or multichannel, and must have a number of dimensions compatible with ``self.features_func``. labels : ndarray of ints Labeled array of shape compatible with ``image`` (same shape for a single-channel image). Labels >= 1 correspond to the training set and label 0 to unlabeled pixels to be segmented. """ self.compute_features(image) fit_segmenter(labels, self.features, self.clf)
[文档] def predict(self, image): """Segment new image using trained internal classifier. Parameters ---------- image : ndarray Input image, which can be grayscale or multichannel, and must have a number of dimensions compatible with ``self.features_func``. Raises ------ NotFittedError if ``self.clf`` has not been fitted yet (use ``self.fit``). """ if self.features_func is None: self.features_func = multiscale_basic_features features = self.features_func(image) return predict_segmenter(features, self.clf)
[文档] def fit_segmenter(labels, features, clf): """Segmentation using labeled parts of the image and a classifier. Parameters ---------- labels : ndarray of ints Image of labels. Labels >= 1 correspond to the training set and label 0 to unlabeled pixels to be segmented. features : ndarray Array of features, with the first dimension corresponding to the number of features, and the other dimensions correspond to ``labels.shape``. clf : classifier object classifier object, exposing a ``fit`` and a ``predict`` method as in scikit-learn's API, for example an instance of ``RandomForestClassifier`` or ``LogisticRegression`` classifier. Returns ------- clf : classifier object classifier trained on ``labels`` Raises ------ NotFittedError if ``self.clf`` has not been fitted yet (use ``self.fit``). """ mask = labels > 0 training_data = features[mask] training_labels = labels[mask].ravel() clf.fit(training_data, training_labels) return clf
[文档] def predict_segmenter(features, clf): """Segmentation of images using a pretrained classifier. Parameters ---------- features : ndarray Array of features, with the last dimension corresponding to the number of features, and the other dimensions are compatible with the shape of the image to segment, or a flattened image. clf : classifier object trained classifier object, exposing a ``predict`` method as in scikit-learn's API, for example an instance of ``RandomForestClassifier`` or ``LogisticRegression`` classifier. The classifier must be already trained, for example with :func:`skimage.future.fit_segmenter`. Returns ------- output : ndarray Labeled array, built from the prediction of the classifier. """ sh = features.shape if features.ndim > 2: features = features.reshape((-1, sh[-1])) try: predicted_labels = clf.predict(features) except NotFittedError: raise NotFittedError( "You must train the classifier `clf` first" "for example with the `fit_segmenter` function." ) except ValueError as err: if err.args and 'x must consist of vectors of length' in err.args[0]: raise ValueError( err.args[0] + '\n' + "Maybe you did not use the same type of features for training the classifier." ) else: raise err output = predicted_labels.reshape(sh[:-1]) return output